
Learning process for Deep Neural Networks

Special Topic report for the B6.2 Optimisation for Data Science

course taught by Prof. Raphael Hauser and Prof. Coralia Cartis

Hillary term 2021-2022

Candidate Number 1064551

Contents

1 Introduction 2

2 Representative problem 2

2.1 The Deep Neural Network

Setup 2

2.2 Characterization of opti-

mization problem 3

3 Optimization tools 7

3.1 Stochastic gradient descent 8

3.2 Nesterov Acceleration . . . 11

4 Acceleration methods 12

4.1 RMSProp 13

4.2 Adam 13

4.3 Final performance compar-

ison 16

5 Conclusion 17

1

1 Introduction

In this special topic we move towards an appropriate learning algorithm. Starting

from gradient descent, bolt on some new features (Nesterov and SGD), then introduce

RMSProp to motive Adam. We will do in the context of a machine learning problem:

recognition of handwritten digits using the MNIST dataset. That will also enable

us to motivate some differences between pure optimization and machine learning

problems. This report assumes a basic understanding of the structure and forward

pass of a deep neural network and gradient descent.

2 Representative problem

To bring context to the optimization techniques discussed in this special topic, and to

introduce the difference between a learning process and pure optimization, we shall

consider a specific machine learning problem: the recognition of handwritten digits.

2.1 The Deep Neural Network Setup

Handwritten digit recognition, using the MNIST dataset, is one of the introductory

problems in deep learning, [9]. It is primarily used as a benchmark to compare

different machine learning algorithms, which is what we too will do.

The dataset consists of 70 000 images (called features xi ∈ X), each with a label

yi ∈ Y corresponding to the number they represent. An image is an array of 28

by 28 pixels, each with a grayscale value, [9]. The data is subdivided into training,

validation and test datasets, as explained in Subsection 2.2.

The Neural Network consists of 3 fully connected layers, mapping from the 28·28

dimensional input vector to a 10 dimensional, corresponding to a one-hot encoding

(highest output is network prediction) of the possible digits, Figure 1. The first 2

layers use relu, and the final layer has a softmax activation function. The parameters

are randomly initialized using a standard normal distribution, scaled with 0.01.

Implementation. The neural network and optimisation algorithm are implemented

in Python using the Jax [1] library. The code (especially the implementations of vec-

torization, just-in-time compilation and gpu acceleration) were inspired by an article

2

Figure 1: Architecture of the neural network. First the image is flattened into a

28 · 28 sized vector, then passed through the three layers. Finally the output vector

is trained to be a one-hot encoding of the 10 classes, such that argmax provides the

network’s prediction.

written by Robert Lange [8]. Jax was chosen for its lightweight yet powerful auto-

matic differentiation system and acceleration tools. The optimization process, over

the full dataset, uses just under 300MB of GPU memory. The entire repository can

found at https://gitlab.com/th3et3rnalz/optimization_special_topic.

2.2 Characterization of optimization problem

Learning the optimal parameters θ, differs from pure optimization in a few key ways.

These mostly stem from the fact that we have but a finite sample of example mappings

(from feature xi to label yi), but want to obtain a model that performs well over

the entire space (from feature space X̂ to label space Ŷ). Another large difference

is that the learning problem consists of a nested optimization problem. Beyond

optimizing for the weights and biases, we are optimizing hyperparameters (in an

outer optimization loop) such that the trained model better approximates the desired

mapping.

2.2.1 Objective function

The objective of the learning process is to find θ such that:

min
θ

f(θ) := L̂(θ; X̂ , Ŷ)

where L̂ is the loss function over the entire space. In practice, we have but a finite

set of samples of this space, (X ,Y). A subset of this, the training dataset (Xt,Yt), is

used for optimization. Hence, as a proxy metric to the true objective, we minimize

L(θ,Xt,Yt) :=
1

m

m∑
i=1

l(θ, xi, yi) (1)

3

https://gitlab.com/th3et3rnalz/optimization_special_topic

where m is the cardinality of the training dataset, xi ∈ Xt, yi ∈ Yt, and l is the

(currently unspecified) loss function.

Accuracy We want to train the model to achieve the highest accuracy possible,

where accuracy is defined as the number of correct classifications over the total number

of predictions.

A :=
correctly classified images

of images
(2)

However, due to the discrete nature of this metric, it cannot be used as a loss function.

Multi-class cross entropy A common loss function for a classification problem

such as this one is the Multi-class Cross-Entropy (MCE). First we pass the output of

the neural network through a softmax function:

ŷ = softmax(ȳ) =
eȳ∑n
j=1 e

ȳi
(3)

which maps the vector ȳ ∈ Rn to non-negative values that sum to 1, which can be

interpreted as probability. A higher value thus corresponds to higher certainty of the

feature belonging to a given class. The MCE is defined as:

l(θ, x) = −
n∑
j=1

yj log(ŷj) (4)

where ŷ = N(x; θ) : R28·28 → R10 is the neural network output and y is the label,

with a one-hot encoding. A one hot encoding of a label is a vector with one nonzero

entry corresponding to which of the classes the feature belongs to.

This loss function was chosen as it emphasizes poor performance (the gradient of

the log is much larger when the prediction accuracy is close to zero). In a classification

problem, we just need the model to correctly predict the class, not necessarily have

the corresponding probability be 1, such that this an appropriate choice.

2.2.2 Capacity: underfitting and overfitting

The learning process will optimize the model over the training dataset, but we actually

want the model to perform well over the entire subspace [2], over all possible pictures

of handwritten digits. The learning process then has a dual aim: both to reduce the

training error, and to keep the gap between training loss L and true loss L̂ small.

4

As a proxy metric to true error, we measure the accuracy over a dataset disjoint

from the training dataset: the test dataset. Both datasets are assumed i.i.d.: idepen-

dent (each sample is independent from the others) and identically distributed (both

datasets are drawn from the same underlying distribution).

Underfitting and overfitting. Comparing both the training and test error during

the training process reveals two competing pitfalls that we aim to avoid: underfitting

and overfitting, visualized in Figure 2. Underfitting occurs when the training error

doesn’t get small enough. Overfitting occurs when the gap between training and test

errors is too large. We control which is more likely to happen by controlling the

model’s capacity: its ability to fit a wide variety of functions.

Figure 2: Comparison of underfitting and overfitting for a linear regression problem.

If a linear model is used, it cannot accurately represent the data (capacity of the

model is too low). On the other hand, a fifth order model does not generalize well to

the unseen points.

Model capacity. One way to control the model’s capacity is to modify the hy-

pothesis space. For a linear regression, that would mean increasing the order of the

polynomial. For a deep neural network this means increasing the number of layers or

nodes in a layer. However, capacity is not only determined by the choice of model.

We have merely considered the model’s representational capacity: the family of func-

tions that the learning algorithm can choose from. There are additional limitations,

such that the effective capacity may be less than the model’s representation capacity.

There are theoretical results that bound the training and generalization error, but

they are generally not used in deep learning, partly because the model capacity is

hard to precisely determine. This is due to the additional limitations imposed by the

learning algorithm, which has to optimize a strongly non-convex objective.

5

It is for these reasons that we consider the loss function progression as an indicator

of the optimization procedure, and consider the test accuracy as an indicator of model

performance.

2.2.3 Hyperparameters and validation sets

There are certain parameters, called hyperparameters, that while unknown, are not

to be optimized by the learning algorithm. That may be because they are hard to

optimize for, or because it is not appropriate to learn them on the training set.

Certain hyperparameters control the carrying capacity of the model (e.g. the

order of the polynomial in linear regression). If we let the learning model modify the

order of the polynomial, it will grow without bound. Similarly, for a neural network

this would just increase the number of layers and nodes.

Nevertheless, we need to set them, which is where the validation set comes in.

While the training dataset is used to train the model, the validation dataset is used

to guide the selection of hyperparameters. We then have three datasets: the training,

validation and testing datasets, of which the training dataset is usually the largest.

After training the θ on the training dataset, the performance is evaluated on the

validation dataset, which is then used to guide the selection of new hyperparameters.

2.2.4 Characterization of the optimization landscape

To choose an optimization algorithm, it helps to understand the nature of the to-be-

optimized function. Even though neural networks are highly non-convex, we present

results indicating that the training process may be tractable.

Wide neural networks Wide neural networks, with linear activation functions

have no confined points [10], where a confined point is defined as a point from where

there is no non-increasing path towards a global minimum, 2.1.

Theorem 2.1: Confined points for Linear Wide NNs [10, Theorem 3]

Consider a feedforward, fully connected neural network, used to model a map-

ping Dx ⊂ Rd → Dy ⊂ Rm, with parameters θ. The network has l layers with

width w is the minimal width of all layers, and the training set has n points.

We assume the loss function to be convex in its first argument.

Then, if w > 2m(n + 1) and the activations are linear, the objective has no

fixed points.

6

This implies we can reach a global minimum from any starting point, assuming

the optimization algorithm does not get stuck on a saddle point. Even though this

has been proven for a very restrictive case, it does correlate with empirical findings

showing that the training process for non-linear activation functions is also feasible

to near-zero loss, [10].

Deep neural networks are usually preferred as they approximate functions with

fewer parameters, as shown by Telgarsky [14]. However, Li et al. [11] show, using

dimensionality reduction to visualize the loss landscape, that the landscape becomes

much less convex, Figure 3a. However, by adding skip connections, the landscape

becomes much more convex and training to a global minimum becomes feasible,

Figure 3b. Skip connections add layers outputs to other that are further down the

forward pass.

Figure 3: Visualization of the loss surfaces of ResNet-56 (A deep neural network with

56 layers) with/without skip connections [11]

Lederer [10] implies that if a (linear) network is wide enough, it is feasible to find

a global minimum, and Li et al. show that this behaviour can be recovered for deep

neural networks using well a chosen architecture. This provides an indication that it

may be possible to train general neural networks to an acceptable minimum.

3 Optimization tools

We shall consider modifications we can make to the steepest descent algorithm, to

create an appropriate optimization algorithm for this problem. We’ll consider ap-

proximating the gradient and adding a numerical analog to momentum.

7

3.1 Stochastic gradient descent

When the training dataset becomes very large, it may no longer be feasible to compute

the full gradient. An alternative is then to subdivide the training set, and compute

an approximation to the true gradient:

θk+1 = θk − αkgk where gk =
1

|Sk|
∇θ

∑
µ∈Sk

l(θ;xµ, yµ) (5)

where Sk ⊂ {1, 2, . . . ,m} is chosen randomly from a uniform distribution. The car-

dinality of Sk, |Sk|, is called the batch size. |Sk| = 1 corresponds to on-line training,

and for 1 < |Sk| < m the method is called mini-bath. This reduces the computational

cost (and hence time) of a single update step. It does however, introduce a stochastic

nature to the optimization process, such that the approximation of the gradient no

longer guarantees descent, only in expectation, [5, Chapter 7.3].

ESk
[Gk] = E[Gk|Sk] =

m∑
j=1

E[Gk|Sk = j] · P[Sk = j] =
m∑
j=1

∇fj(θk) ·
1

m
= ∇f(θk) (6)

where Gk is the underlying distribution from which gk is drawn. As SGD is similar

to GD working on a different dataset at every iteration, we can no longer expect

monotonically decreasing loss. In our case, the training set will once be randomly

subdivided into batches of size |Sk|, which will be iterated over. We then define

one epoch as an iteration over the entire training dataset. Though computationally

convenient, the convergence behaviour is also modified, Theorem 3.1.

Theorem 3.1: SGD Convergence [5, Chapter 7.3, Theorem 9]

Let f be bounded below by flow, ∇fj(θ) be L-smooth (and hence ∇f is L-

smooth too, same L), and that there exists and M > 0, such that:

V ar(Gk|Sk) := E[||Gk −∇f(θk)||22|Sk] ≤M. (7)

Apply SGD with |Sk| = 1 and fixed stepsize α = η/L, where η ∈ (0, 1]. Then

for k ≥ 1:

min
0≥1≥k−1

E[||∇f(θi)||22] ≤ ηM +
2L(f(θ0)− flow)

kη
(8)

Through additional smoothness assumptions, one can show that under the same

assumptions as Theorem 3.1:

lim
k→∞

E[||∇f(θk)||22] ≤ ηM (9)

8

Hence, for the SGD method, we can only achieve convergence up to a certain bound,

called the noise floor. To achieve convergence, we can either modify our assumption

of constant step size (letting αk → 0 with k →∞) or we can asymptotically increase

the batch size to the full dataset (|Sk| → m with k →∞).

One might therefore assume that the larger the batch size, the better the conver-

gence rate (as we have a more complete estimate of the gradient) and we’ll be able

to achieve a lower final error bound.

Comparing batch size Let us compare the training process for batch sizes 64 and

256 (multiples of 2 are chosen as this is beneficial for GPU acceleration). Following

the scaling rule proposed by Goyal et al. [3] (”When the minibatch size is multiplied

by k, multiply the learning rate by k”), we compared the loss progression, epoch time

and test accuracy over 10 epochs, Figure 4, from which a few observations can be

made:

Figure 4: Comparison of convergence behaviour for training deep neural network via

SGD with different batch sizes (b = 64 and b = 256), and α = 10−3 · b/64. The

lines show the values averaged over 5 runs, and the shaded area adds a confidence

band of one standard deviation (very small for loss plot). The final accuracy is

Ab=64 = 39.6%± 9.9 and Ab=256 = 42.16%± 6.3 (mean ± standard deviation).

1. The variance in the loss indeed seems smaller for a larger batch size

2. The general loss progression for both batch sizes is quite similar, and the dif-

ference between the final test accuracies is statically insignificant.

9

Figure 5: Comparison of accuracy and epoch time for different batch sizes, averaged

over 5 runs. Note the statistically significant performance decay for batch sizes above

1024.

3. The just-in-time compilation of the coefficient update function (which needs to

be redone for different batch sizes) has a significant effect on the training time

for the first epoch

4. The computational cost (visible through epoch time) is drastically reduced for a

larger batch, which is due to the optimizations possible when accelerating with

a GPU.

This supports the initial guess that larger batch sizes are indeed beneficial, but

not because of the reduction in noise, rather due to the reduced epoch time. However,

Goyal et al. show numerically that there is a critical batch size above which the final

test accuracy is lower [3, Figure 1]. We repeat the training process for larger batch

sizes, noting that the linear scaling rule breaks down for batch sizes of 8192 and above,

there the step size at 0.001 · 4096/64.

A possible justification, proposed by Wilson and Martinez [4] is related to the

relationship between the sampling frequency of the loss landscape. For a large batch

size, there will be little noise around the true gradient, but it will be sampled only

relatively few times, while for a small batch size, while more noisy, yields more fre-

quent sampling of the loss landscape. This more frequent sampling leads to a faster

convergence rate (until we approach the noise floor). By increasing the step size,

with batch size, we (apparently) don’t loose much until we get to a critical size. As

larger batch sizes have smaller epoch times, there is a sweet spot batch size for neural

network training.

10

3.2 Nesterov Acceleration

Momentum based methods incorporate information from the previous step to bias

the current step. A pure momentum step is defined as

θk+1 = θk − αk∇f(θk) + β(θk − θk−1). (10)

where β ∈ (0, 1) is the momentum decay constant. This embodies the physics concept

of momentum: if an object a moving at a certain velocity, it takes time to change

direction or slow down. Nesterov accelerated gradient (NAG) takes this one step

further and samples the gradient at a momentum estimated point:

θx+1 = θk − αk∇f
(
θk + β(θk − θk−1)

)
+ β(θk − θk−1) (11)

Theorem 3.2: Convergence rate NAG [5, Section 6.4, Theorem 8]

Let f : Rn → Rn be a convex L-smooth function that has at least one finite

minimizer θ∗ ∈ argminf(θ) and a finite minimum f ∗ = min f(θ). Then the

sequence (θk)k∈N of iterates produced by the nesterov acceleration algorithm

for L-smooth functions satisfies

f(θk) ≤ f(θ∗) +
4L||θ0 − θk||2

(k + 2)2
(12)

for all k ∈ N.

Theorem 9 of [5] shows that, for an L-smooth, γ convex function, with constant

step size, the convergence rate is of NAG is faster than steepest descent:

1−
√
γ

L
< 1− γ

L
, (13)

especially for ill-conditioned problems (where γ � L).

One might expect that to also have acceleration for the non-convex optimisation

problem that we have. However, when combined with SGD, it does not, in general,

provide an acceleration over SGD, in contrast to the deterministic, strongly convex

scenario.

11

Figure 6: Comparison between SGD+Nesterov and SGD for a batch size of 1024,

learning rate of α = 0.001 and β = 0.9. The lines indicate the mean, and the

confidence bands one standard deviation, for 5 runs.

Theorem 3.3: Non-acceleration of SGD+Nesterov [12]

Let (xi, yi)
n
i=1 be a dataset generated according to the component decoupled

model [WTF IS THAT?]. Consider the optimization problem of minimizing

the quadratic function 1
2n

∑
i(x

T
i w − yi)2. For any step size η > 0 and momen-

tum parameter γ ∈ (0, 1) of SGD+Nesterov with random initialization, with

probability one, there exists a T ∈ N such that ∀t > T ,

E[f(wt)]− f(w∗) ≥
(

1− C γ
L

)t
[f(w0)− f(w∗)] (14)

where C > 0 is a constant.

Theorem 3.3 shows an example of a specific objective function, for which adding

Nesterov to SGD does not provide acceleration. Hence, in the general case, we cannot

conclude that SGD+Nesterov provides acceleration over pure SGD

In this specific situation, for the same learning rate, Nesterov+SGD does provide

an improvement over pure SGD, as can be seen in Figure 6. This improvement is

both in terms of the value of the loss, and the test accuracy.

4 Acceleration methods

Having introduced SGD and momentum based methods, and their pitfalls, we can

now better understand optimization algorithms commonly used in deep learning. For

both methods presented, we can arbitrarily choose to use SGD or the full gradient.

12

4.1 RMSProp

RMSProp is an (unpublished) adaptive learning rate optimizer, proposed by Hinton

[6]. It adapts the learning rate depending on the history of the squared gradient in a

given direction:

vt = β · vt−1 + (1− β)g2
t (15)

θt+1 = θt −
α√
vt + ε

· gt (16)

where gt is either the full gradient or a stochastic estimate (for SGD), α is the learning

rate, ε = 10−8 is added to prevent division by zero, and all multiplications and

divisions are performed element-wise. The velocity vt is an exponentially average of

the squared gradient.

This modification of the learning rate specific per direction/variable, increases the

step size when the gradient is large relative to the history, and decreases it for a

direction where the gradient is small. This potentially enables us to choose a larger

α without encountering divergence.

To analyze the effect of this coordinate specific learning rate multiplication factor,

set ε = 0 and rewrite in one equation:

θt+1 = θt − α sign(gt)

√
g2
t

β · vt−1 + (1− β)g2
t

. (17)

vt can be understood to be a (biased) historical average of g2
t , thus the fraction

g2
t /vt indicates whether the gradient in that parameter is increasing or decreasing.

If g2
t is increasing (steeper gradient), the stepsize is reduced, and if g2

t is decreasing

(flattening) the stepsize is increased. In effect, for every parameter, it tries to ”jump

over” flat planes and not jump over cliffs (where a local minimum may lie).

4.2 Adam

Adam is an optimization technique that combines RMSProp and momentum, and

adds bias correction, [7]. On this specific problem, it has similar performance to

RMSProp, though seems to be more stable, Figure 8.

4.2.1 The algorithm

Let f(θ) be a noisy objective function (in our case the loss function made noisy due

to SGD), differentiable w.r.t. θ, whose expected value E[f(θ)] we are interested in

minimizing.

13

Figure 7: Comparison of Nesterov and RMSProp over 5 runs with shaded error bounds

of one strandard deviation.

Figure 8: Comparison of Adam and RMSProp for 5 runs, with a batch size of 1024,

α = 0.001, β = β1 = 0.9, β2 = 0.999, and ε = 10−8. The final accuracy is AAdam =

97.7± 0.10 and ARMSProp = 98.1± 0.13 (in format mean % ± standard deviation).

The algorithm iteratively updates exponential moving averages of the gradient

(mt) and the squared gradient (vt), as controlled by β1, β2 ∈ [0, 1). These are initial-

ized as zero vectors, and thus biased towards zero, especially for the initial steps and

for small β1, β2. Correcting this bias yields v̂t and m̂t. Here too ε (usually chosen

10−8) is added to prevent division by zero errors.

The update equations for Adam are:

mt = β1 ·mt−1 + (1− β1) · gt (18a)

vt = β2 · vt−1 + (1− β2) · g2
t (18b)

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(18c)

θt+1 = θt −
α√
v̂t + ε

· m̂t (18d)

14

The effective step at time t, with ε = 0 is ∆t = −α · m̂t/
√
v̂t. If all previous

gradients were zero, extreme sparsity, the effective step size is bounded above by

|∆t| ≤ α · (1 − β1)
√

1− β2 in the case (1 − β1) >
√

1− β2. Otherwise it is bounded

above by |∆t| ≤ α. Usually, the gradient will be similar to that on the previous steps,

such that m̂t/
√
v̂t ≈ ±1, and hence the step size α is an approximate bound on the

effective step size. This can interpreted as establishing an approximate trust region.

Signal-to-noise. The value of |m̂t/
√
v̂t| will only deviate from unity when the loss

landscape changes significantly, when g2
t differs from its exponentially weighted aver-

age. We can hence say that m̂t/
√
v̂t resembles a signal to noise ratio (SNR). A smaller

SNR means there is uncertainty, and smaller step size is required, and vice-versa for a

larger SNR. The SNR typically becomes 0 towards an optimum, reducing the effective

step size as a form of automatic annealing.

Initialization bias correction. At all time steps, we wish the expectation of mt

to be equal to the expectation of gt. First rewrite the definition of mt in explicit form:

mt = (1− β1)
t∑
i=1

giβ
t−i
1 (19)

Then the expectation is:

E[vt] = E

[
(1− β1)

t∑
i=1

giβ
t−i
1

]
(20)

= E[gt](1− β1)
t∑
i=1

βt−i1 + ζ (21)

= E[gt](1− βt1 + ζ (22)

where the last step is due to a collapsing sum and ζ is an offset that is zero if the true

first moment is stationary. It is kept small due to the exponentially decaying average,

placing less weight on past terms. Setting ζ = 0, we can define the exponentially

corrected first moment:

v̂t =
vt

1− βt1
. (23)

just as in the algorithm. The derivation for m̂t is analogous.

4.2.2 Convergence analysis

Let f1(θ) + f2(θ) + · · ·+ fT (θ) be a series of loss functions (in our case corresponding

to the mini-batches). At each time t, we must predict θt so as to minimize ft(θ).

15

However, since the sequence is unknown, we evaluate the ft(θt) − ft(θ∗) where θ∗ =

argminθ
∑T

t=i ft(θ), defining regret:

R(T) =
T∑
i=1

[ft(θt)− ft(θ∗)] (24)

Theorem 4.1 implies that, if the gradients gi are bounded and the data features

are sparse, then the regret is bounded. Specifically, it is bounded by the sum of by a

constant and a term growing with
√
T . This implies:

R(T)

T
= O

(
1√
T

)
. (25)

Under the assumptions of Theorem 4.1, we thus conclude:

lim
t→∞

ft(θt)− ft(θ∗) = 0 (26)

Theorem 4.1: Adam Regret bound [7, Theorem 4.1]

Assume that the function ft has bounded gradients, ||∇ft(θ)||2 ≤ G,

||∇ft(θ)||∞ ≤ G∞ for all θ ∈ Rd and distance between any θt generated by

Adam is bounded, ||θn−θm||2 ≤ D, ||θn−θm||∞ ≤ D∞ for any m,n ∈ {1, . . . , T}
and β1, β2 ∈ [0, 1) satisfying β2

1/
√
β2 < 1. Let αt = α/

√
t and β1,t = β1γ

t−1

with γ ∈ (0, 1). Then Adam achieves the following guarantee, for all T ≥ 1:

R(t) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i +

α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+
d∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− γ)2
(27)

4.3 Final performance comparison

Comparing the results of all algorithms, it’s easy to come jump to conclusions. Con-

sidering Figure 9, Adam and RMSProp seem to be optimal. From the close-up in

Figure 8, we can see that RMSProp finds a better solution, though it’s not clear

whether it is statistically significant. One might be tempted to say that Adam,

thanks to the stable performance and high test accuracy is the optimal algorithm,

but it has been shown to not converge asymptotically in some scenarios [13], especially

in reinforcement learning settings [15].

16

Figure 9: Final comparison of all optimization algorithms presented. Optimization

was performed over 10 epochs, with α = 0.001, β = β1 = 0.9, β2 = 0.999, ε = 10−8,

batch size of 1024

More importantly, these are the results without any hyperparameter optimiza-

tion. Especially the learning rate α has a large effect on performance in this epoch-

constrained setting. In practice SGD+Nesterov, RMSProp and Adam are all fre-

quently used algorithms, with the optimal one differing between problems.

5 Conclusion

We have motivated the introduction of Adam, by first introducing SGD, Nesterov and

RMSProp. Each of the three steps to Adam can be applied arbitrarily to form an

optimization algorithm that is appropriate for a given learning problem. The optimal

algorithm is strongly dependent on the type of problem, as even Adam (which seemed

optimal in this scenario) can have non-convergence asymptotically.

To find out which of the presented algorithms is optimal, hyperparameter tuning is

needed. The model seems to have an appropriate capacity as we don’t get a reduction

in testing accuracy, when training beyond the peak accuracy. Maybe this means we

should increase the capacity to be able to attain a lower test error, which also part

of hyperparameter tuning.

One of the main conclusions from this report is that, in the optimization of deep

learning problems, we don’t approach the asymptotic bounds, neither the noise floor of

SGD (though we do see noise in the loss function) or converge towards machine error.

Empirical tests are crucial for discovering optimal performance in a computationally

constrained environment.

17

References

[1] James Bradbury et al. JAX: composable transformations of Python+NumPy

programs. Version 0.2.5. 2018. url: http://github.com/google/jax.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[3] Priya Goyal, Piotr Dollar, and Ross Girshick. “Accurate, Large Minibatch SGD:

Training ImageNet in 1 Hour”. In: Data @ Scale by Facebook (June 2017).

url: https://research.facebook.com/publications/accurate-large-

minibatch-sgd-training-imagenet-in-1-hour/.

[4] Priya Goyal, Piotr Dollar, and Ross Girshick. “Accurate, Large Minibatch SGD:

Training ImageNet in 1 Hour”. In: Data @ Scale by Facebook (June 2017).

[5] Raphael Hauzer and Coralia Cartis. B6.2 Optimisation for Data Science, Lec-

ture Notes. Mar. 2022. url: https://courses.maths.ox.ac.uk/course/

view.php?id=112.

[6] Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its

recent magnitude. url: https://www.cs.toronto.edu/~hinton/coursera/

lecture6/lec6.pdf.

[7] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed.

by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.

6980.

[8] Robert Tjarko Lange. “Getting started with JAX (MLPs, CNNs and RNNs)”.

In: roberttlange.github.io (2020). url: https://roberttlange.github.io/

posts/2020/03/blog-post-10/.

[9] Yann LeCun. The mnist database. url: http://yann.lecun.com/exdb/

mnist/.

[10] Johannes Lederer. Optimization Landscapes of Wide Deep Neural Networks Are

Benign. 2020. doi: 10.48550/ARXIV.2010.00885. url: https://arxiv.org/

abs/2010.00885.

18

http://github.com/google/jax
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://research.facebook.com/publications/accurate-large-minibatch-sgd-training-imagenet-in-1-hour/
https://research.facebook.com/publications/accurate-large-minibatch-sgd-training-imagenet-in-1-hour/
https://courses.maths.ox.ac.uk/course/view.php?id=112
https://courses.maths.ox.ac.uk/course/view.php?id=112
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://roberttlange.github.io/posts/2020/03/blog-post-10/
https://roberttlange.github.io/posts/2020/03/blog-post-10/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.48550/ARXIV.2010.00885
https://arxiv.org/abs/2010.00885
https://arxiv.org/abs/2010.00885

[11] Hao Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: Advances in

Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran

Associates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/

file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

[12] Chaoyue Liu and Mikhail Belkin. “Accelerating SGD with momentum for over-

parameterized learning”. In: International Conference on Learning Representa-

tions. 2020. url: https://openreview.net/forum?id=r1gixp4FPH.

[13] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Convergence of

Adam and Beyond”. In: CoRR abs/1904.09237 (2019). arXiv: 1904.09237.

url: http://arxiv.org/abs/1904.09237.

[14] Matus Telgarsky. Representation Benefits of Deep Feedforward Networks. 2015.

doi: 10.48550/ARXIV.1509.08101. url: https://arxiv.org/abs/1509.

08101.

[15] Huaqing Xiong et al. “Non-asymptotic Convergence of Adam-type Reinforce-

ment Learning Algorithms under Markovian Sampling”. In: CoRR abs/2002.06286

(2020). arXiv: 2002.06286. url: https://arxiv.org/abs/2002.06286.

19

https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://openreview.net/forum?id=r1gixp4FPH
https://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1904.09237
https://doi.org/10.48550/ARXIV.1509.08101
https://arxiv.org/abs/1509.08101
https://arxiv.org/abs/1509.08101
https://arxiv.org/abs/2002.06286
https://arxiv.org/abs/2002.06286

	Introduction
	Representative problem
	The Deep Neural Network Setup
	Characterization of optimization problem

	Optimization tools
	Stochastic gradient descent
	Nesterov Acceleration

	Acceleration methods
	RMSProp
	Adam
	Final performance comparison

	Conclusion

