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1 Introduction

This case study concerns the modelling of the growth of axons. Modelling of axonal

growth is not only interesting to predict what affect the growth of neurons, but could

only give insight into the growth mechanisms, or be used as a baseline to understand

the effect of neurological diseases.

We first consider biological background for axonal growth. Then we consider

models that correspond to the two prevailing theories. Subsequently we derive and

analyse a model that combines them. Finally, an extended model is derived under

that discretely models both types of growth.

2 Biological background

Neuronal cells initially grow extensions called neurites, one of which differentiates into

an axon, whose growth profile is modelled in this report. To model axonal growth

it is imperative to have an understanding of the structure of an axon, is the growth

mechanism, and the processes that influence it.

2.1 Axonal cell structure

Figure 1: Schematic of a typical neuron showing the soma, the dendrites and the

axon along with a close-up of the growth cone [5].
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An axonal cell consists of a cell body (soma), and neurites, Figure 1. One of

these neurites differentiates by length, becoming an axon, while the rest become

dendrites. The axonal shaft consists mainly of stabilized microtubules, cross-linked

by microtubule-associated proteins. At tip of the axon is a highly dynamic actin-

supported extension called the growth cone. It has two main functions: sense its

environment to determine in which direction the neuron ought to grow, and to advance

in that direction, yielding growth, [5].

2.2 Axonal growth

Axonal growth is defined as the irreversible elongation of the neurite shaft supported

by addition of new cellular material [1]. To reach its functional target, an axon must

extend along a precise path, determined by the growth cone, in a growth stage called

axonal guidance. Once the target is reached, the axon tip forms synapses with it, and

is chemically bound, such that the axon must extend to accommodate the animal’s

growth, in a growth phases called stretch growth. This report considers the growth

of an axon along a given path during axon guidance.

As part of the growth of the axon, free microtubule monodimers are synthesized

in the cell body, transported along the axon and constructed into the cytoskeleton

[6]. Where and how these tubulin are added is a debated research question [5].

Tip growth. An important theory in the 80s and 90s is that the microtubules along

the shaft are stationary and that the shaft only extends through microtubule assembly

at the tip. Models assuming this form of growth are called tranport limited models.

The process along which the the cytoskeletal proteins (such as neurofilaments, actin

and tubulin) are moved along the axis is called slow axonal transport [3]. Direct

observations of tip growth are lacking.

Shaft growth. Another theory, mechanically mediated growth, assumes that growth

is a response to an applied mechanical force. It postulates that the growth cone gen-

erates a tensile force during its migration, which creates internal tension and yields

growth along the entire axon. Models assuming this type of growth are called me-

chanically mediated models. Experimental results [4] indicate that shaft growth is

possible.
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3 Transport Model

Transport models assume that the transport of free tubulin towards the tip of the

axon is the limiting factor for axonal growth. We shall review the one-dimensional

model presented by McLean [2].

3.1 Governing equations

Mass conservation governs the spatio-temporal distribution of tubulin. It states that

the concentration of tubulin can be changed by either an outgoing flux J or by a

source term S. In three dimensions this yields:

d

dt

ˆ
V

c(x, t)dV = −
ˆ
∂V

J · dV +

ˆ
V

S(x, t)dV

Applying the divergence theorem allows the simplification to:

ˆ
V

(
∂c(x, t)

∂t
+∇ · J− S(x, t)

)
dV = 0

which holds for an arbitrary volume. We shall be considering a single dimension only,

in which case the equation reduces to:

∂c(x, t)

∂t
+
∂J(x, t)

∂x
= S(x, t) (3.1)

The flux considered is both active transport Jactive = ac(x) and diffusion Jdiffusion =

−D∇c, yielding a total flux J = (a(x) − D∇)c, with a(x) and D proportionality

factors. The source term consists here merely of the degradation proportional to the

concentration: S = −κ · c, for κ > 0 a positive constant. This yields the following

governing equation:

∂c

∂t
−D∂2c

∂x2
+ a

∂c

∂x
= −κc (3.2)

on a domain Ω := {(x, t)|x ∈ [0, l(t)], t ≥ 0}. As the domain is time dependent, we

also need an equation for the length of the neuron. The rate change of the length is

assumed to be balanced by the assembly of microtubule γc|x=l and the disassembly

β:
dl

dt
= γc|x=l − β with l(0) = l0 (3.3)
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3.2 Boundary conditions

We assume that there is an influx of microtubule from the soma (x = 0), and outflux

at the growth cone (x = l). In both cases, that is a flux from left to right: −el ·∇c =

−∂c/∂x, hence:

∂c

∂x
=

−ε0c0 at x = 0,

−εlc+ ζl at x = l
(3.4)

where ε0 > 0 is the tubulin production rate, εl the flux sink rate, ζl the returned flux

(due to the disassembly process, related to sg) and c0 a typical tubulin scale.

4 Mechanical Model

O’Toole [2] presents a model based on shaft growth, generated by a tensile force F0

in the axon. The proximal end of the axon, the soma, is kept fixed, and the axon is

embedded in a substrate which creates dissipative forces fη(x), Figure 2.

Figure 2: Setup of axonal model as dashpot with a force F0 applied at x = l(t) and

a dissipative force fη along the axon.

The axon is loosely modelled as a dashpot, such that the velocity (in the local

reference frame) is given by vx(x, l(t)) = f(x, l(t))/G where f is the local force, and

G is the dashpot constant. We can use this to find the velocity of any point in the

global reference frame (choosing v(x, l(t)) = 0, i.e. the soma doesn’t move):

v(x, l(t)) =

ˆ x

0

vx(x, l(t))dt =
1

G

ˆ x

0

f(x̃, l(t))dx̃ (4.5)

We note that f is the local resultant force, with contributions from both the

applied tip force, and the dissipation from the substrate: f(x, l(t)) = F0− fη(x, l(t)).
We can relate the spatial derivative of the dissipative force, fηx , to the point’s velocity

with respect to the substrate: fηx = −ηv(x, l(t)). Note that the minus sign is because
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the dissipative force reduces towards the soma. Integrating:

fη(x, l(t)) = fη(x = l(t), l(t)) +

ˆ x

l(t)

−ηv(x, l(t))dt = 0 + η

ˆ l(t)

x

v(x, l(t))dt (4.6)

Combining (4.5) and (4.6):

fη(x, l(t)) =
η

G

ˆ l(t)

x

ˆ x̄

0

f(x̃, l(t))dx̃dx̄

Then we remember f(x, l(t))) = F0 − fη(x, l(t)), and hence find the following

integral equation:

f(x, l(t)) = F0 −
η

G

ˆ l(t)

x

ˆ x̄

0

f(x̃, l(t))dx̃dx̄

which we can reduce into ODE form, and also recover boundary conditions by evalu-

ating f and f ′ at carefully chosen points such that the integral vanishes, yielding the

following boundary value problem:

∂2f

∂x2
=
η

G
f

f(x = L(t), L(t)) = F0

∂f

∂x
(x = 0, l(t)) = 0

We thus have a second order ODE with 2 boundary conditions: we can solve this!

The general solution of the ODE is given by:

f(x) = A cosh (αx) +B sinh (αx)

where α = η
G

. We then plug in the boundary conditions:

fx(x = 0) = 0 → 0 = αA sinh(0) + αB cosh(0)→ B = 0

f(x = l(t)) = F0 → F0 = A cosh(α l(t))→ A =
F0

cosh(α l(t))

which then yields the final form of the resultant internal force f :

f(x, l(t)) =
F0 cosh(αx)

cosh(αl(t))
(4.7)

which leaves us with the unknown l(t). However, we know dl
dt

= v(x = l(t)), and also

have an expression for v, (4.5), hence:

dl

dt
=

1

G

ˆ l(t)

0

f(x, l(t))dx =
F0

G cosh(αl(t))

ˆ l(t)

0

cosh(αx)dx

=
F0 [sinh(αx)]l(t)0

αG cosh(αl(t))
=

F0 sinh(αl(t))

αG cosh(αl(t))
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which is an ODE we can solve:

dl

dt
cosh(αl(t)) =

F0

αG
sinh(αl(t))

d

dt

(
sinh(αl(t))

α

)
=

F0

αG
sinh(αl(t))

sinh(αl(t)) = He
F0
G
t

l(t) =
1

α
arcsinh

(
He

F0
G
t
)

where we then plug in the initial condition l(0) = L0 to find sinh(αL0) = He0, and

hence we have the following final expression for the length of the axon over time:

l(t) = arcsinh
(
sinh(αL0)eF0t/G

)
/α (4.8)

Experimental results tracking the movement of docked mitochondria (which are

attached to the axon) show that the axon indeed moves, substantiating this assumed

form of growth, and hence the model, as can be seen in Figure 3.

Figure 3: Mitochondria positions (white) along the axon (horizontal-axis) and over

time (vertical axis). It shows increasing velocity of the axonal shaft towards the tip.

5 Combined Model

To build a combined model, we shall use the mechanical model to find the deformation,

and then use a (modified) tubulin conservation equation, similar to the transport

model, to find the required tubulin concentration distribution.

5.1 Mechanically mediated growth

The mechanical part of this model consists of the 1D mechanical model described in

Section 4. From this model we need the axonal length l(t), the velocity v(x, l(t)) and

its first spatial derivative vx(x, l(t)). The last two can be calculated from f(x, l(t)) in

(4.7). We then have:
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l(t) = arcsinh
(
sinh(αL0)eF0t/G

)
/α (5.9)

v(x, l(t)) =
F0 sinh(αx)

Gα cosh(αl(t))
(5.10)

vx(x, l(t)) =
F0 cosh(αx)

G cosh(αl(t))
(5.11)

5.2 Transport mediated growth

For the derivation of the second part, we continue from the 1D mass conservation

equation derived in Section 3

∂c(x, t)

∂t
+
∂J(x, t)

∂x
= S(x, t) (5.12)

We shall consider three different sources of flux:

1. Diffusion: JD = −D ∂c
∂x

2. Active transport: Ja = ac

3. Stretch: Js = vc (this is the transport of tubulin due to the movement of the

axon within which the tubulin moves).

For the source term, we shall consider two contributions:

1. Non-local degradation of tubulin Sd = −κc

2. Consumption of tubulin to construct the axon. It is derived from the continuity

equation, which expresses the conservation of mass in a fixed volume:

∂ρ

∂t
=

∂

∂x
(ρv) + S(x, t)

We then make the assumption that the linear density of the microtubule in

the axon ( 6= the density of free tubulin) is constant in both space and time.

Then the equation reduces to give the source term that corresponds to the

consumption of tubulin due to the growth velocity v:

Sc(x, t) = −ρ∂v(x, t)

∂x

Plugging all these terms into the PDE (3.1) yields:

∂

∂t
c−D ∂2

∂x2
+

∂

∂x
((a+ v)c) = −κc− ρ∂v

∂x
(5.13)
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Boundary conditions We choose to specify the concentration at the soma, and a

no flux boundary condition at the growth cone:

c(x = 0, t) = c0(t) (5.14)

(Jd + Ja + Js)|x=l(t) = 0→ ∂c

∂x
(x = l(t), t) =

a+ v(x = l(t), t)

D
(5.15)

Initial condition Not having any information to prescribe an initial condition, we

set the simplest initial condition that meets the boundary conditions, and make the

assumption that for long time, the effect of this initial condition is zero.

c1(x, t) = c0(t) +
a+ v(x = l(t), t)

D
x (5.16)

5.3 Solving the combined model

Given that the mechanical model is explicitly solved, to find a solution to the model,

we must solve the transport model for the space-time distribution of the concentration

of free tubulin. We will justify and analyse two simplified models.

5.3.1 Model 1: Simple ODE.

For this first model we do not consider the transient component (∂/∂t→ 0, as growth

is much slower than the transport processes), nor do we consider diffusion (D = 0, as

it is much slower than active transport), or tubulin degradation (κ = 0), resulting in:

∂

∂x
((a+ v)c) = −ρ∂v

dx
(5.17)

As it is a first order ODE we only need to prescribe one boundary condition, but

we have two. We choose to apply the no flux boundary condition, and then recover

the required concentration at the soma to make this deformation possible. Due to

D = 0, the no flux boundary condition is changed:

(Js + Ja)|x=l = 0 → (a+ v)c|x=l = 0 → c(x = l) = 0 (5.18)

Note that we while v and vx depend on time, and the concentration is also time

varying, we solve only for one specific point in time.
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Analytic solution Recognising both sides of the ODE as being the derivative w.r.t.

x, we can solve it exactly:

∂

∂x
((a+ v(x))c) =

∂

∂x
(−ρv(x)) → c(x) =

P − ρv(x)

a+ v(x)
(5.19)

Then we apply c(x = l) = 0:

0 = P − ρv(l) → c(x) = ρ
v(l)− v(x)

a+ v(x)
(5.20)

We can also recover c0:

c0 = c(x = 0) = ρ
v(l)− v(0)

a+ v(0)
=
ρv(l)

a
(5.21)

as the velocity at the soma is zero (it is chosen as the reference point).

Numerical solution While numerically solving the ODE is not necessary as we

have the analytic solution, it is useful for validating the numerical approximation tech-

nique. We have chosen to use finite differences, outlined in Subsection A.1, yielding

Figure 4.

Figure 4: Comparison of the numerical solution and the exact solution, when all

coefficients are set to 1. Note that as the number of points is increased, the numerical

approximation approaches the analytical solution.

5.3.2 Model 2: Adding diffusion

We can create a second order model by adding diffusion (D 6= 0):

−D∂2c

∂x2
+

∂

∂x
((a+ v(x)c(x)) = −ρ∂v

∂x
(5.22)
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which also changes the no flux (J(x = l) = 0) boundary condition:

D
∂c

∂x
= (a+ v)c → ∂c

∂x

∣∣∣∣
x=l

=
a+ v

D
c (5.23)

Numerical solution We can discretise (5.22) and the boundary conditions using

finite differences, as outlined in Subsection A.2 to find Figure 5.

Figure 5: Numerical solution of Model 2 with all coefficients set to 1, except c0, which

was numerical optimized to yield c(x = l) = 0

5.3.3 Results

Let us perform some sanity checks on the results. Comparing the results from Model

1 (Figure 6) to Model 2 (Figure 7), we notice:

1. When adding another transport mechanism (diffusion), going from Model 1 to

Model 2, the concentration at every point in space (for a given point in time) is

lower. This is expected because more transport means the tubulin consumption

for growth is more easily satisfied.

2. The length, as a function of time, is identical between both models. They have

identical deformation because only the concentration PDE simplification differs

between them.
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Figure 6: Model 1 Figure 7: Model 2

By varying the model coefficients, for either model, we can perform further sanity

checks. In Figure 8 note:

1. The top three graphs show that increasing the force increases the length (though

only for t > 0), in both models equally. This corresponds to an increased tubulin

consumption and hence a higher concentration is required.

2. The bottom left graph shows that by adding diffusion, a lower free tubulin

concentration is needed.

3. The last two graphs show that if we decrease the transport mechanism coeffi-

cients, more free tubulin is required.

5.4 Analytical analysis

To perform asymptotic analysis, let ε =
√
η/G and σ = F0/

√
ηG. We then consider

a deformation that changes ε while keeping σ constant (thus assuming η ∝ 1/G). If

we let ε → 0, that implies either the substrate force dissipation disappears (η → 0),

or the axon becomes very stiff (G→∞). This sets:

v(x) = σ
sinh(xε)

cosh(lε)
= σ

εx+O((εx)3)

1 +O((εl)2)
→ lim

ε→0
v(x) = σεx =

F0

G
x (5.24)

Thus for small ε, the mechanical model reduces to uniform linear growth. On the

other hand, large ε corresponds either to very strong adhesion (η → ∞), or a very

12



Figure 8: Variations on the model coefficients of both Model 1 (M1) and Model 2

(M2)

ductile axon (G→ 0). The velocity then becomes:

x� ε → v(x) ≈ 0

x ≈ l → v(x) ≈ tanh(εl)→∞

and hence for large ε, the velocity v(x) approaches the delta function δ(x− l). This

implies tip growth. Hence, in the case where ε→∞ and σ is constant, the combined

model reduces to tip growth.

5.5 Extended Model

As an extension to the combined model, we add a discrete compartment at the tip

that enables tip growth. This model has thus both shaft and tip growth, whose

relative strength is determined by (unknown) coefficients. While the combined model

exhibits tip growth asymptotically, it does not have a discrete tip growth process

for finite coefficients. The aim of this model is to allow fitting of experimental to

determine which of the two growth theories is more likely.

Biologically, the growth cone has an inherently different structure that the rest,

as can be seen in Figure 1. Hence, one could potentially consider both shaft and tip

growth.
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5.5.1 Model derivation

To add tip growth to the combined model, we add a discrete compartment at the

growth cone, which consumes tubulin and extends the axon, similar to end growth

cone compartment in a 0D transport model, as presented by Oliveri [5, Section 3.1.1].

We keep the mechanical model up to the equations for velocity and its special deriva-

tive:

v(x, l(t)) =
F0

Gα

sinh(αx)

cosh(αl(t))
vx(x, l(t) =

F0

G

cosh(αx)

cosh(αl(t))
(5.25)

Then we want to find l(t) and c(x, t). We assume that the change in axonal length

is due to both the velocity of the growth cone w.r.t. the substrate and due to the

assembly and disassembly of microtubules at the growth cone:

dl

dt
= v(x, l(t)) + γc|x=l − β (5.26)

where β > 0 represents a constant rate of disassembly, γ > 0 is a proportionality

constant for the rate of assembly, and v(x = l, t) is the velocity of the axonal tip w.r.t.

the substrate. Then we need an equation for the distribution of the concentration,

which is where the transport model comes in. We add a source term to subtract the

tubulin used for growth:

∂c

∂t
+

∂

∂x

(
(a+ v)c−D∂c

∂x

)
= −ρ∂v

∂x
+ δ(x− l) · (β − γc) (5.27)

We consider the PDE in 2 domains:

Domain 1: 0 ≤ x < l(t) Just as in Model 1, presented in Subsubsection 5.3.1, let

us neglect ∂c/∂x, and diffusion, finding:

∂

∂x
((a+ v)c) =

∂

∂x
(−ρv) → c(x, t) =

c̃1(t)− ρv(x, t)

a+ v(x, t)

To simplify comparison with the combined model, let c̃1(t) = c1(t) + ρv(l, t):

c(x, t) =
c1(t) + ρ(v(l, t)− v(x, t))

a+ v(x, t)
in 0 ≤ x < l(t) (5.28)

where we thus require c1(t) ≥ 0.

Domain 2: x = l(t) Neglecting diffusion (D → 0) and assuming continuity of c

(though not of ∂c/∂x):

∂c

∂t
+

∂

∂x
((a+ v)c) = −ρvx + β − γc at x = l. (5.29)
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Figure 9: Comparison of Models 1, 2 and 3. Note that the deformation of models 1

and 2 is the same, as they are governed by l(t) given in (4.8)

Expanding an rearranging yields:

∂c

∂t
= −∂v

∂x
(ρ+ c)− (a+ v)

∂c

∂x
+ β at x = l (5.30)

Then we make the assumption that ∂c/∂x|x=l is a constant. Since c(x, t) is strictly

monotonously decreasing towards the growth cone, we find it must be strictly nega-

tive. Note that by (5.28) and continuity of c, we have: c(l, t) = c1(t)/(a+ v(l, t)).

Governing equations We then find a system of 2 first order ODEs in time with

two unknowns for the extended model (which we call Model 3):

dc1

dt
= (a+ v)

(
−(a+ v)

∂c

∂x
− ρ∂v

∂x
− γ c1

a+ v
+ β

)
(5.31)

dl

dt
= v + γ

c1

a+ v
− β (5.32)

Numerical solution Setting ∂c/∂x = −1, l(t = 0) = 1, c1(t = 0) = 2, and all

other coefficients 1, we can solve the first order system numerically, and compare it

with Model 1 (5.3.1), and Model 2 (5.3.2), yielding Figure 9.

5.5.2 Discussion

Considering Figure 9, we can perform some sanity checks. From the left-most figure

we can see that, as expected, adding another growth mechanism and keeping all

other coefficients equal yields faster growth. From the middle figure we see that

indeed the concentration at the growth cone is nonzero, such that it can consume
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tubulin. From the two rightmost pictures we can see that this extra growth (without

a higher transport coefficients) means a higher concentration is needed. From the

rightmost picture we can see that indeed, Model 3 has a very similar shape to Model

1 (both first order models without diffusion), but with a longer axon at t = 5 and a

higher concentration.

This extended model provides a pathway for discerning which of the two proposed

growth techniques is more likely. There are however, some further steps that must be

taken before being able to do this. Most importantly, the validity of ∂c/∂x|x=l must

be investigated, and justified. Secondly, it would be interesting to add diffusion and

tubulin degradation to the model.

6 Conclusion

We have first reviewed the two prevailing types of models: transport limited and me-

chanically mediated. Then, we have derived a combined model, whereby the defor-

mation is presecribed by the mechanically mediated model, and the spatio-temporal

concentration distribution is prescribed by a modified set of equations from the trans-

port model.

Finally, we have extended this model by adding a discrete compartment at the

tip. This model exhibits both shaft and tip growth, whose relative proportions are

determined by unknown coefficients. The hope is that this model could be used,

through fitting of experimental data, to determine which of the two growth modes is

more likely.
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A Finite Difference Discretisations

A.1 Model 1

We discretise

(a+ v(x))
dc

dx
+

dv

dx
c = −ρdv

dx

on a homogeneous mesh Ω : x ∈ [0, l] with step size ∆x as

(a+ v(xi))
ci+i − ci

∆x
+

dv(xi)

∂x
ci = −ρdv(xi)

∂x

ci

(
∆x

∂v

∂x
(xi)− (a+ v(xi))

)
+ ci+1(a+ v(xi)) = −ρ∂v

∂x
(xi)

where ci = c(xi) = c(∆x · i). The applied boundary condition is cN = 0. This then

yields the following matrix equation:

a1 b1

a2 b2

. . . . . .

aN−2 bN−2

aN−1





c1

c2

...

cN−2

cN−1


=



d1

d2

...

dN−2

dN−1


(A.33)

which can be solved to find c, shown in Figure 4.

A.2 Model 2

−Dci+1 − 2ci + ci−1

(∆x)2
+ (a+ v(xi)

ci+1 − ci
∆x

+ ci

(
∂v

∂x
(xi)

)
) = −ρ∂v(xi)

∂x

ci−1(−D) + ci

(
2D − (a+ v(xi))∆x+ (∆x)2

(
∂v

∂x
(xi)

))
+ci+1(−D + ∆x(a+ v(xi))) = −ρ∂v(xi)

∂x

ci+1ai + cibi + ci−1di = gi

On the left end of the domain we simply apply the robin boundary condition

ci=0 = c0. On the right side however, we need to derive an appropriate expression

18



using finite differences:

ci − ci−1

∆x
=
a+ v(xi)

D
ci

CN − CN−1 =
∆x

D
(a+ v(xi))CN

CN−1(−1) + CN

(
1− ∆x

D
(a+ v(xi))

)
= 0

This can again be write in matrix form and solved for c, yielding Figure 5.
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