
Solving ODEs with Neural Networks

Computational Case Study report

supervised by Dr. Kathryn Gillow

Hillary term 2021-2022

Candidate Number 1064551

Contents

1 Introduction 2

2 Neural Networks 2

2.1 Perceptron 2

2.2 Layer 2

2.3 Loss and backpropagation 3

2.4 Deep Neural Network . . . 4

3 General problem 4

3.1 Empirical vs true risk min-

imization 6

3.2 Underfitting vs overfitting 7

4 Problem Solving 8

4.1 First order ODE 8

4.2 Sinusoidal first order ODE 8

4.3 Second order ODE 9

4.4 Solving systems of ODEs . 10

5 Hyperparameter tuning 11

5.1 Hand tuning 12

5.2 Grid search 12

5.3 Random Search 13

5.4 Evolutionary algorithms . 14

5.5 Gradient free non-linear

optimization algorithms . 15

5.6 Bayesian optimization

with acquisition function . 15

6 Conclusion 16

A Images 18

B Backpropagation Derivation 19

1

1 Introduction

In this report we shall look into how we can train neural networks to predict the

solutions for differential equations. First, we’ll build up the structure of a neural

network, and how we can train it. Then we’ll present the general setup for solving

ordinary differential equations, including how this differs from general supervised

machine learning, and give some examples. Finally we’ll consider strategies for setting

the hyperparameters.

2 Neural Networks

A neural network is a class of models that map from an input x to an output y using

perceptron nodes. When these nodes are arranged in multiple successive layers, the

model is called deep.

2.1 Perceptron

Perceptrons, schematically shown in Figure 1, also called artificial neurons (for their

inspiration from biological neurons), are functions that take vector input, apply a

linear mapping, and then a non-linear activation function, returning a scalar value.

ŷ = φ
(
wTx + b

)
where x,w ∈ Rn, y, b ∈ R (2.1)

and φ is a general non-linear function such as the sigmoid or tanh.

Figure 1: Visual representation of a perceptron with 3 inputs xi, a bias value b, which

are all added together, and then applied to the activation function φ to yield ŷ

2.2 Layer

We can arrange these perceptrons in a layer, Figure 2, such that they all take as

input the same vector, and their outputs are concatenated in another vector (not

necessarily of the same size). Specifically:

ŷ = N(x) = φ(Wx + b) where y,b ∈ Rm, x ∈ Rn, W ∈ Rm×n. (2.2)

2

where thus L : Rm → Rn, and φ is applied element-wise.

Figure 2: Layer of 2 perceptrons with three inputs. For clarity the labels of weights

biases are omitted.

2.3 Loss and backpropagation

Suppose we want to train a layer (thus its parameters W and b) to map from x ∈ X
to y ∈ Y. For this we choose a loss function to quantify the model performance,

which we hence try to minimize. Consider the Squared Error:

SE = ||y − ŷ||22/2 = ||y − L(x;W,b)||22/2 (2.3)

Which we try to minimize not for a single mapping x→ y, but for the entire dataset

(with cardinality |Y|), for all points xk = X and yk = Y, yielding the Mean Square

Error:

L =
1

2|Y|

|Y|∑
k=1

||yk −N(xk;W,b)||22 (2.4)

We shall try to apply a gradient descent algorithm, hence need the gradient of the

loss w.r.t. the parameters W and b, ∇WL and ∇bL:

∂L
∂Wab

=
1

2|Y|
∑
k

∂SEi

∂Wab

(2.5)

∂L
∂ba

=
1

2|Y|
∑
l

∂SEi

∂ba
(2.6)

where the partial derivative terms are derived and given in Appendix B. Rearranging

the weight matrix and bias vector into a vector θ, we can correspondingly construct

∇θL from the (2.5).

Lemma 1. [2, Lecture 1]. Let L(θ) ∈ C1, θ, s ∈ Rn and s 6= 0. Then:

∇L(θ)T s < 0 → ∀α > 0 sufficiently small: L(θ + αs) < L(θ).

3

Proof. If ∇L(θ)T s < 0, and ∇L is continuous, then there exists a sufficiently small

ᾱ such that ∀α ∈ [0, ᾱ]: ∇L(θ+αs)T s < 0. Next, performing a Taylor expansions of

L(θ + αs) around θ:

L(θ + αs) = L(θ) + α∇L(θ + α̃s) for some α̃ ∈ (0, α)

And hence restricting α ∈ (0, ᾱ) yields the desired result.

Therefore, we conclude that for a sufficiently small α, the update step θ := θ−αs
with s = ∇L yields a decrease in loss, until s = 0 (which implies an extremum).

Hence, with this technique, we can update the weight matrix and bias vector to

(asymptotically) bring the loss to a minimum, though it does not provide any guar-

antees about whether the minimum is local or global.

2.4 Deep Neural Network

Appending multiple layers forms a deep neural network, Figure 3. The output of

one layer then feeds into the next one. The loss definition doesn’t change, but the

computation of the gradient becomes more involved.

Figure 3: Deep neural network consisting of an input layer (xi), 2 hidden layers and

an output layer (yi)

3 General problem

The aim of this case study is to create neural networks that map from coordinate

vector (or scalar in 1D case) to the value of the solution of a differential equation.

Let’s consider a general second order ODE

a(x)
d2φ

dx2
+ b(x)

dφ

dx
+ c(x)φ = d(x) (3.7)

4

with Dirichlet boundary conditions:

φ(xa) = a φ(xb) = b. (3.8)

Note that the neural network must have a single input and a single output, but we

otherwise have no requirements on its architecture.

Boundary condition enforcement. Let us modify the output of the neural net-

work such that the boundary conditions are always satisfied. To do this, we use

a special activation function in the final layer of the ODE, mapping to a space of

solutions where the BCs are always satisfied:

φ = A(x) +B(x)N(x) = a+ (b− a)
x− xa
xb − xa

+ (x− xa)(x− xb)N(x) (3.9)

where N(x) is the neural network, A(x) was designed to satisfy the BCs and B(x) to

ensure the network contribution is zero at the BCs.

Loss function. We want the network to best approximate a solution to the ODE.

Hence, we want the error between the left hand and right hand sides to be minimal.

Let us again define the MSE over a set of points {xi}ni=1:

L =
1

2n

n∑
i=1

(
a(xi)

d2φ

dx2
+ b(xi)

dφ

dx
+ c(xi)φ− d(xi)

)2

. (3.10)

One major difference with the general network case is that here the evaluation of

the loss function involves the computation of the derivative(s) of the neural network.

Though this is possible to do manually, it isn’t regularly done because:

1. The manual computation is tedious and error prone

2. The final result isn’t easily adaptable to a new differential equation or neural

network architecture

To resolve these issues, we use automatic differentiation. It is a computational tech-

nique whereby you define the function (in this case the neural network) from input

to output, and an algorithm analytically computes the derivative w.r.t. any desired

input variable.

5

Algorithm The autodifferentiation library used, Jax [1], is functional, hence it

dictates a certain code structure. Assume we have a function forward pass(w b, x)

that takes both an input x and the neural network’s weights and biases w b (previously

called θ), and that ode error func computes the error between the left and right

hand sides of the ODE. A generic implementation of the gradient descent updating

algorithm for the weights and biases is then:

def loss(w b , x):

phi = forward pass(w b , x)

dphi dx = jacobian(forward pass)(w b , x)

ddphi dxx = hessian(forward pass)(w b , x)

return mean(ode error func(ddphi dxx , dphi dx , phi, x)∗∗2)

def update(w b , x):

grad = grad(loss)(w b , x)

w b = w b − alpha ∗ grad
return w b

We first define the computation of the loss function, which includes evaluations of

the derivative(s) of the neural network (jacobian for first derivative and hessian for

second). To update the loss we then sample the gradient of the loss function, and

apply the update function.

The implementation in Python of the neural network has vectorization (so that

the entire dataset can be evaluated in parallel), Just-In-Time (JIT) compilation and

GPU aceleration to speed up computation. The result is that for (4.11), it takes just

2.6 to perform JIT compilation and 104 training iterations over 64 points. Note that

the number of points is a multiple of 2 as this improves the performance when using

GPU acceleration.

Rather than using gradient descent with a constant step size, we use Adam [5],

which adapts its learning rate for each coordinate based on exponential averages of

the gradient and squared gradient, as it was empirically found to perform better than

gradient descent (with or without momentum).

3.1 Empirical vs true risk minimization

While we minimize the loss over a finite subset of [xa, xb], we actually wish to minimize

over the entire space, [4, Section 5.2]. However, computers can only deal with finite

6

quantities, and with increasing number of points comes increasing computational cost.

Hence we must measure and optimize the loss on a finite set of points (empirical risk)

while we want to minimize the error over all points (true risk).

In effect, during the training process, we not only want to minimize the empirical

error, but also the gap between the empirical and true error. As we can’t sample the

true error, we must approximate it. For this, we divide the dataset into two: training

data and test data. The training data is used in the optimization algorithm, while

the test error is simply used to approximate the true error.

In this specific situation where the data (x points) can be generated as needed, we

simply define the test dataset to be another linear spacing between xa and xb, with

more points than the training dataset (here chosen to be 1024).

3.2 Underfitting vs overfitting

When training a machine learning problem, we need to balance underfitting and

overfitting. Underfitting occurs when the model is not able to obtain a sufficiently low

error on the training set (for example fitting a linear model to a underlying quadratic

distribution). Overfitting occurs when the gap between training and test error is too

large. The relationship between the two is mediated by the model capacity, [4].

Figure 4 compares the test error of neural networks trained with differing numbers

of training points. It might be surprising to see that a neural network trained on 2

points (thus x = 0 and x = 1) can learn. This is because the loss function does not

only evaluate the value of the neural network, but also its derivatives, which aren’t

fixed by the boundary condition enforcing activation function.

We can draw a few conclusions from Figure 4. Firstly, we don’t seem to be

experiencing overfitting, even when the number of points is just 2. One hypothesis

for this is that, placing Dirichlet boundary conditions, and using the derivative in

the loss function, there isn’t much freedom left for the network to overfit. Secondly,

increasing the number of training points does increase the model accuracy, which will

not be visible in the loss function, but will greatly affect model performance. We

must still be careful to avoid overfitting, hence, we never use less than 10 points for

training.

7

Figure 4: Absolute error (w.r.t. the exact solution) of a neural network trained on

npoints ∈ {2, 4, 6, 8, 10} points, evaluated on a mesh of 1024, for the second order ODE

of (4.13).

4 Problem Solving

We can now use the neural network to approximate solutions to differential equations,

and have recreated the examples presented by Lagaris et al. [6].

4.1 First order ODE

Consider Example 2 from Lagaris et al. [6, p. 8]:

d

dx
φ+

1

5
φ = e−

x
5 cos(x) with φ(0) = 0. (4.11)

It has exact solution φ = e−x/5 sin(x). To enforce the BC, the final layer activation

function must be ŷ = 0 + x · N(x; θ). Figure 5 shows the resulting neural network

prediction, error, and loss progression. We note that at x = 0 (and only there) the

error is zero, which is due to the final activation layer that enforces the left boundary

condition. Note that the troughs to zero are sign changes of the error (whose absolute

value is plotted).

4.2 Sinusoidal first order ODE

One might say that approximating the solution to (4.11) isn’t very complicated, as

the solution doesn’t very much from the line between the two imposed Dirichlet

boundary conditions. To demonstrate that this technique is valid for more curvy

8

Figure 5: Comparison of the neural network output and the true value, for (4.11),

for a single training run of 104 epochs, using the Adam [5] optimizer with a learning

rate α = 0.001 and 64 points, linearly spaced between 0 and 1.

ODEs, consider:

d

dx
φ− φ1

4
= ex/4π cos(πx) with φ(0) = 0 (4.12)

for which the exact solution is φ(x) = ex/4 sin(πx). Imposing a different boundary

condition doest not increase the complexity of the problem as all it changes is the

final activation function, which now is ŷ = xN(x; θ).

From Figure 6 we can see that the neural network is able to effectively approximate

the solution to (4.12). The distinct steps in the training loss seem to coincide with

sudden changes in the form of the solution. During the training process, the solution

approximation seems to always attach to a peak or valley, as can be seen in Figure

11, and then jump to a better approximation.

4.3 Second order ODE

Consider Example 3 from Lagaris et al. [6, p. 9]

d2

dx2
φ+

1

5

d

dx
φ+ φ = −1

5
e−x with φ(0) = 0, φ(1) = e−1/5 sin(1). (4.13)

The exact solution is again φ(x) = e−x/5 sin(x). The final layer activation function

is ŷ = x sin(1)e−1/5 + x(1 − x)N(x; θ). Figure 7 shows the comparison between the

neural network prediction and truth, as well as the loss progression. The main change

with Figure 5 is that here the error goes to zero both at x = 1 and x = 2.

9

Figure 6: Comparison of solution of (4.12). Neural network has 2 hidden layers of

10 nodes each, trained using Adam with a learning rate α = 10−3, 128 equidistant

points between x = 0 and x = 6 in 5 · 105 epochs

Figure 7: Comparison of the neural network output and the true value, for (4.13),

for a single training run of 104 epochs, using the Adam [5] optimizer with a learning

rate α = 0.001 and 64 points, linearly spaced between 0 and 1.

4.4 Solving systems of ODEs

We can extend the framework presented in Section 3 to also solve systems of ODEs,

by increasing the number of outputs of the neural network. Consider Example 4

presented by Lagaris et al. [6, p. 9]

d

dx
φ1 = cos(x) + φ2

1 + φ2 − (1 + x2 + sin(x)2) with φ1(0) = 0 (4.14)

d

dx
φ2 = 2x− (1 + x2) sin(x) + φ1φ2 with φ2(0) = 1

10

Figure 8: Comparison of the neural network prediction and the true solution of (4.14).

The neural network has 2 hidden layers of 20 nodes each, was trained using Adam

with α = 10−5, trained using 128 equidistant points between 0 and 2 for 5·105 epochs.

on x ∈ [0, 3]. The analytic solutions are φ1(x) = sin(x) and φ2(x) = 1 + x2. The

final layer activation function is then ŷ1 = xN1(x; θ) and ŷ2 = 1 + xN2[x; θ], where

N1 and N2 are the first and second entries of the neural network output vector. The

two outputs imply that the MSE is defined as ||e||22, where ei is the error (left hand

side minus right hand side) of the i-th differential equation.

Figure 8 shows the neural network results. As this is a system of first order ODEs,

with a boundary condition applied on the left, we see the error goes to zero towards

x = 0, and increases with x. We note that, even though the final loss is lower than the

previous examples, the accuracy (absolute error) is worse. Two hidden layers of 20

nodes each, and a learning rate of α = 10−5 was needed to achieve this performance.

5 Hyperparameter tuning

When building a neural network and training it, many parameters must be chosen,

initially arbitrarily or using intuition. These hyperparameters greatly affect the per-

formance of the final model and must hence be optimized for. The problem we shall

consider in this optimization process is the sinusoidal ODE, presented in Subsection

4.2, as its learning process was empirically found to be more sensitive than the others

11

to the hyperparameters.

Hyperparameters are parameters that aren’t set during the main training proce-

dure. This include the shape of the network (number of layers and node in each layer),

the optimization algorithm (which itself has hyperparameters such as the learning

rate), the initialization strategy, the activation functions, and many more.

General strategies. There are many strategies for hyperparameter tuning, which

one is optimal will depend on the specific problem. Hand tuning is a good for initially

getting the optimization working. Grid search and random search are two techniques

that aim to sample most of the parameter space. Other techniques take an initial

guess and sample around it to make new guesses, taking into account the previous

samples.

5.1 Hand tuning

Though it takes experience to acquire, intuition for choosing hyperparameters, and

understanding their effect, is of great importance when developing a neural network

model. Initially guesses may also be obtained from literature. For example, Diederik

and Kingma, when presenting Adam [5] give reasonable initial values for α, β1 and β2.

Sometimes, looking at previous work can be useful to gauge an appropriate number

and size of layers. By manually tweaking these initial guesses (e.g informed by looking

at the loss progression or test accuracy) we can find reasonable parameter values.

Using hand tuning, we found the following hyperparameters: a network structure

[1, 10, 10, 1] (2 hidden layers with 10 nodes each) with sigmoid and BC enforcing

activation functions; a learning rate α = 0.001 and 128 equidistant points. To enable

us to vary number of points without explicitly favouring more points, we limit the

number of epochs at 107/npoints.

5.2 Grid search

One strategy we might use is to search all combinations of hyperparameters, where

each hyperparameter is one of a finite set. In our case we let these be:

1. Network structure: N ∈ {[1, 20, 1], [1, 10, 10, 1], [1, 7, 7, 6, 1], [1, 5, 5, 5, 5, 1]}

2. Learning rate α ∈ {0.01, 0.001, 0.001}

12

3. Number of points npoints ∈ {10, 100, 1000}

4. Scaling of the random initial weights matrices and bias vectors ε ∈ {0.1, 0.01, 0.001}

This yields 108 different options. However, to be able to make any statistically

significant conclusions, we must run each option multiple times, we chose 10 multiples.

This is an optimization over more than 10 Billion points.

The results, shown in Figure 9, enable us to draw some conclusion. Firstly, the

training dataset should compromise only of 10 or 100 points, more points leads to

strictly worse performance. Next, we can see that a small learning rate (α = 0.001)

and many layers, leads to poor performance, probably because the small step size

does not let the algorithm make much progress in this epoch constrained environment.

Somewhat surprisingly, both 3 and 4 layers are have worse performance than 1 and

2.

Figure 9: Parallel coordinates plot illustrating the results of the grid search. The

colour of each line is related to the final loss.

The best performance, with an (estimated) true loss of L̂ = 1.6 ∗ 10−6 is obtained

by setting α = 10−4, ε = 10−3, npoints = 10 and having one hidden layer.

5.3 Random Search

As grid search is quite computationally expensive, we might wish to consider randomly

subsampling. While a uniform distribution is possible, it might lead to oversampling

of certain areas and undersampling of others. What we want is an even spread of

13

Figure 10: Parallel plot of the hyperparameters evaluated and the accompanying loss.

all points over the parameter space. One technique is to use a quasi-random Sobol

sequence [7].

Given that we don’t know the order of magnitude of many of these parameters,

we must choose the range of the random values carefully. Let

1. Learning rate α = 10cα where cα ∈ [−3,−1]

2. Number of points npoints = 10cnp where cnp ∈ [1, 2]

3. Scaling ε = 10cε where cε ∈ [−3,−1]

Note that we can’t randomly sample the network structure, so we’ll have to per-

form a grid search over, over all 4 options. We choose to try 4 · 10 samples, each

repeated 10 times.

The results are shown in Figure 10. The best performance, with an (estimated)

true loss of L̂ = 3.0 ∗ 10−7 is obtained by setting α = 5.6 · 10−3, ε = 1.7 · 10−2,

npoints = 23 and having two hidden layers.

5.4 Evolutionary algorithms

The main idea to improve upon the performance of the grid and random search is

to use the information from previously performed function evaluations to guide new

hyperparameters to explore. One way to do this is using an evolutionary algorithm.

This class of algorithms is loosely modelled upon the evolution of species in nature.

It starts, as explained by Verlag and Smith in [3], by generating an initial population,

where each invidual is defined by a set of parameters (in our case these are the

hyperparameters). Then, their fitness is evaluated (here quantified by the final test

14

loss). The best performing 5%, called the elites, are kept for the next generation.

Then, from the remaining population, 25% is randomly selected to be a parent,

to create the next generation. Note that the percentages mentioned are not fixed,

simply reasonable values. The parents are then randomly combined, and offspring

are generated by apply genetic mutation operators to their parameters (we considered

crossover and mutation). This new generation then has its fitness evaluated and the

loop restarts. As termination condition, we went for 10 generations, but one can also

choose to stop after a certain number of iterations of no new offspring outperforming

the best elite.

The best performance, with an (estimated) true loss of L̂ = 8.4 ∗ 10−7 is obtained

by setting α = 8.8 · 10−3, ε = 6.3 · 10−2, npoints = 32 and having three hidden layers.

Comparing with the result of grid and random search, we see that the learning rate,

scaling, and number of points are comparable, but the number of layers is different

for all three.

5.5 Gradient free non-linear optimization algorithms

To minimize complicated non-linear functions, there exist many algorithms, such as

Nelder Mead, BFGS, Newton and many more. However, the main problem with

using these is the stochastic nature of the optimization problem. We want to reduce

L̂ = E[L], but can only perform noisy sampling. This is an issue because the search

direction of these algorithms is based on the function evaluations, whose differences

the algorithm doesn’t know are statistically significant or not. Repeatedly sampling

the function does not solve this problem.

5.6 Bayesian optimization with acquisition function

Bayesian optimization is a constrained optimization technique for noisy functions.

The main idea is that it repeatedly samples the function at parameters which have

the best potential loss, according to a Bayesian model.

It starts by randomly sampling the function at multiple parameter values. Then

builds a Bayesian model around those samples, to build a 95% confidence interval for

the value of E[L]. Then, using an acquisition function, it samples the function at the

potentially most promising value, defined by having the highest value for the sum of

the mean and two standard deviations. After updating the model, the loop continues.

Termination can occur either when the confidence interval of the best option is small,

or after a fixed number of iterations.

15

We ran this optimization for α = 10cα and ε = 10cε where cα ∈ [−4,−2] and

cε ∈ [−3,−1], keeping the number of points at 32 and 2 layers of 10 nodes each.

After just 50 total evaluations (no repeats), it find the optimal parameters to be

α = 8.8 · 10−3 and ε = 1.7 · 10−3, with an approximated true loss L̂ = 4.7 · 10−8.

6 Conclusion

The first conclusion we can draw from this case study, is that indeed, neural networks

can be used to solve differential equations, also systems, even those whose solution

oscillates strongly. The difference between testing and train loss is very small, because

we train for the derivatives of the function, such that (with the limited degrees of

freedom of a small network) it can’t vary much between training points.

The two main complications with hyperparameter tuning is that the loss function

is very noisy, and costly to evaluate. Therefore hand tuning, is a suitable technique

to guess initial parameters. Once the network runs, further tuning could be done

using grid search or random search, but this is very costly, especially because every

evaluation needs to be repeated to obtain an estimate of the standard deviation, and

hence statistical significance of the result. Bayesian optimization on the other hand

is very well suited to optimizing expensive and noisy functions, yielding a statistically

significant optimal result. Another conclusion to draw regards the value of intuition.

It is useful not only for finding initial hyperparameters, but also to appropriately set

the optimization bounds, greatly diminishing the parameter space.

16

The code used in this special topic is available at https://gitlab.com/th3et3rnalz/

optimization_special_topic.

References

[1] James Bradbury et al. JAX: composable transformations of Python+NumPy pro-

grams. Version 0.2.5. 2018. url: http://github.com/google/jax.

[2] Coralia Cartis. Continuous Optimisation, Lecture slides. 2022. url: https://

courses.maths.ox.ac.uk/course/view.php?id=164.

[3] A. E. Eiben and James E. Smith. Introduction to evolutionary computing. Springer

Berlin, 2016.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[5] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed.

by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.

6980.

[6] I.E. Lagaris, A. Likas, and D.I. Fotiadis. “Artificial neural networks for solving

ordinary and partial differential equations”. In: IEEE Transactions on Neural

Networks 9.5 (1998), pp. 987–1000. doi: 10.1109/72.712178. url: https:

//doi.org/10.1109%2F72.712178.

[7] I.M Sobol’. “On the distribution of points in a cube and the approximate eval-

uation of Integrals”. In: USSR Computational Mathematics and Mathematical

Physics 7.4 (1967), pp. 86–112. doi: 10.1016/0041-5553(67)90144-9.

17

https://gitlab.com/th3et3rnalz/optimization_special_topic
https://gitlab.com/th3et3rnalz/optimization_special_topic
http://github.com/google/jax
https://courses.maths.ox.ac.uk/course/view.php?id=164
https://courses.maths.ox.ac.uk/course/view.php?id=164
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/72.712178
https://doi.org/10.1109%2F72.712178
https://doi.org/10.1109%2F72.712178
https://doi.org/10.1016/0041-5553(67)90144-9

A Images

Figure 11: Neural network solution prediction of the solution of (4.12) during the

training process, at various epochs.

18

B Backpropagation Derivation

∂MSE

∂Wij

=
∂

∂Wij

(
(y − ŷ)T (y − ŷ)/2

)
=

∂

∂Wij

(
yTy − 2yT ŷ + ŷT ŷ

)
/2

=
∂

∂Wij

(
−

n∑
l=1

ylŷl +
1

2

n∑
l=1

ŷ2l

)

= −yi
∂ŷi
∂Wij

+ ŷi
∂ŷi
∂Wij

∂MSE

∂Wij

= (ŷi − yi)
∂ŷi
∂Wij

where we used (2.1) to note that only yi depends on Wij. Then

∂ŷi
∂Wij

= φ′(ŷi)
∂

∂Wij

(Wi:x + bi) = φ′(ŷi)xj.

Similarly
∂ŷi
∂bi

= φ′(ŷi) · 1

Hence, for points xk and yk we find the MSE partial derivatives to be:

∂MSEk

∂Wij

= (ŷi
k − yki)φ′(yki)xkj (B.15)

∂MSEk

∂bi
= (ŷi

k − yki)φ′(yki) (B.16)

19

	Introduction
	Neural Networks
	Perceptron
	Layer
	Loss and backpropagation
	Deep Neural Network

	General problem
	Empirical vs true risk minimization
	Underfitting vs overfitting

	Problem Solving
	First order ODE
	Sinusoidal first order ODE
	Second order ODE
	Solving systems of ODEs

	Hyperparameter tuning
	Hand tuning
	Grid search
	Random Search
	Evolutionary algorithms
	Gradient free non-linear optimization algorithms
	Bayesian optimization with acquisition function

	Conclusion
	Images
	Backpropagation Derivation

