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1 Introduction

This report pertains to the analysis of balloon instability. It starts, in Section 2,

with a qualitative introduction to the phenomenon for a general cylindrical shell.

Then, before the main problem, the general techniques are introduced in Section 3

with the analysis of the inflation of a spherical shell. Then, in Section 4 the general

cylindrical shell model is defined, simplified and analysed. Then, Section 5 pertains

to the analysis required to find the characteristic pressure values of the inflation.

2 Qualitative explanation

When a cylindrical hyperelastic shell (such as a long party balloon) is inflate by slowly

filling it with air, it can contain sections in two distinct states, one with much larger

strain than the other, while there still is a spatially constant internal pressure. This

section gives a qualitative explanation of the process, through Figure 1, based on [1,

5, 8]. The top row of the figure shows the shape of the balloon for each state, the

middle row the position(s) on the pressure P versus stretch λa relationship derived

later, and the bottom row the pressure P versus volume V history of the inflationary

process.

Figure 1: Progression of balloon inflation

In state 1, the internal pressure is above external pressure, and the strain in-

creases (non-linearly but monotonously) with the pressure. Higher pressure, higher

deformation, everywhere.

Each section of the balloon has a specific pressure, defined Pmax, above which the

deformation changes behaviour. Then, depending on how the inflation is carried out,

the deformation proceeds differently. If the inflation process is pressure specified,

then crossing Pmax would result in a jump in the deformation, directly to the higher
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strain at the same pressure. The other option, which we will henceforth assume, is

that an air mass flow rate (i.e. adding 10 g/s of air to the balloon) is specified. Thus

we specify a (time dependent) volume, and measure the pressure and strain.

As the air mass increases, a certain weaker section will have its local Pmax exceeded

and start deforming much faster than the rest (consider the P versus λa graph of state

2 in Figure 1). This large expansion constitutes an increase in volume, whereby, under

quasi steady-state conditions, the internal pressure drops. This results in only one

section exceeding its Pmax and thus only that section transitions into a second stable

state for that pressure, the bulge has then localized. Note that while there may be

three strains that correspond to a specific pressure, the one with the negative slope

is unstable as any material section will simply ”strain away from it”.

The result, state 3, is a balloon in two distinct, stable phases with a smooth

boundary between them (still with a spatially constant gas pressure). The phase

boundary between these two states is quite complex due to the non-homogeneous

stretch and not considered here. If gas is then added, a low strain section of the

balloon near the phase boundary transforms into a high strain section, effectively

moving the boundary, state 4. Once the entire balloon is in the high strain phase,

homogeneous-strain expansion resumes, shown as state 5.

Deflation The models that we are about to derive, and the explanation above

only cover the inflation of a balloon, not the deflation. It is distinct from simply being

inflation in reverse, for a number of reasons:

1. The material, when deformed to the high-strain state, may undergo non-reversible

physical changes, such as plastic deformation. Even if the changes are reversible,

the deformation process may be different or poorly modelled by the chosen strain

energy function.

2. The path taken on the P versus λa curve is non-trivial. Decreasing the air mass

from state 5, would bring material sections to the local minimum, from where

it is not directly clear what would happen if the air mass is further decreased.

3 Model for a spherical shell

In this section, we will derive the behaviour of a spherical (as opposed to cylindrical)

shell, as a simplification of the general case qualitatively explained in Section 2, based

on the lectures by Prof. Dominic Vella and the corresponding lecture notes [8, p. 48].
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This will introduce the solving technique and illustrate the effect of the strain energy

function. Due to its symmetry, a spherical shell will not exhibit the low and high

strain phases simultaneously, but we can still recover the P versus λa curve.

The main assumptions made while deriving the model are:

• We consider all transformations to occur under quasi steady-state conditions

such that there is no time dependent behaviour.

• The shell is made of an incompressible, hyperelastic material, then the following

relationship holds: T = J−1F dW
dF
− p̃1, with J = det(F ) = 1

• The only radial stress on the two boundary surfaces is the pressure.

3.1 Kinematics

Consider the deformation of a spherical shell from its initial state to the current

state shown in Figure 2. This subsection defines the deformation, and finds the

corresponding mapping Q→ q and deformation gradient.

Figure 2: Deformation of a spherical balloon

Defining the transformation The deformation is defined such that, for any given

point, only the distance to the origin changes, (3.1). Points in the original configu-

ration are described by Q = {R,Θ,Φ}, while in the current configuration they are

given in terms of q = {r, θ, ϕ}. These cylindrical coordinates can be transformed into

the Cartesian reference frame using (3.2).
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q(Q) =

r(R)

θ(Θ)

ϕ(Φ)

 =

r(R)

Θ

Φ

 (3.1)

x =

x1

x2

x3

 =

r cos(ϕ) sin(θ)

r sin(ϕ) sin(θ)

r cos(θ)

 X =

X1

X2

X3

 =

R cos(Φ) sin(Θ)

R sin(Φ) sin(Θ)

R cos(Θ)

 (3.2)

eα = h−1
α

∂x

∂qα
, Eβ = H−1

β

∂X

∂Qβ

α, β = 1, 2, 3 (3.3)

hα =

∣∣∣∣ ∂x∂qα
∣∣∣∣ Hβ =

∣∣∣∣ ∂X∂Qβ

∣∣∣∣ (3.4)

Finding the deformation gradient Each coordinate has an associated basis vec-

tor, defined from the Cartesian vector, (3.3), where the hα and Hβ are scale factors

as defined in (3.4) [8, p. 17]. The deformation gradient F then becomes [8, p. 20]:

F = Grad(x(X))

= H−1
β

∂x

∂Qβ

⊗Eβ

= H−1
β

(
∂x

∂qα

∂qα
∂Qβ

)
⊗Eβ

= H−1
β

(
hαeα

∂qα
∂Qβ

)
⊗Eβ

F =
hα
Hβ

∂qα
∂Qβ

eα ⊗Eβ. (3.5)

For a spherical coordinate system, the scale factors are:

hr = 1 = Hr, hθ = r → HΘ = R, hϕ = r sin(θ)→ HΦ = R sin(Θ). (3.6)

Then, using these scale factors, the definition of the transform (3.1), and the modified

transformation gradient equation (3.5), we can find it to be :

F =
dr

dR
er ⊗ER +

r

R
eθ ⊗EΘ +

r sin(θ)

R sin(Θ)
eϕ ⊗EΦ. (3.7)

Then, noting that θ = Θ, we can write the deformation gradient in matrix form:

[F ] =

r
′(R)

r/R

r/R

 . (3.8)
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As the diagonal entries of [F ] are the derivatives between corresponding coordinate

vectors of the initial and current configuration, they are called principle stretches.

Let λr = r′(R), λθ = r/R = λφ.

Explicit deformation Next, we may apply the assumption of an incompressible

material: J = det(F ) = 1:

r′(R) · r
2

R2
= 1 → d

dR

(
r3

3

)
= R2 → r3

3
=
R3

3
+ C1. (3.9)

To fix the unknown constant C1, we can apply a boundary condition: r(A) = a:

r(A)3 = a3 = A3 + 3C1 → r(R) =
3
√
a3 − A3 +R3. (3.10)

Note that only one BC could be applied (not the one at r(B) = b). Due to the

assumption of incompressibility, the strain on one boundary, r = a in this case, fully

determines the transformation.

3.2 Dynamics

Having an explicit expression for the deformation and the deformation gradient, we

can now look at how this deformation relates to the internal stress in the material.

Cauchy’s first equation of motion The general form of Cauchy’s first equation

of motion [8, p. 30] reduces, under the assumption of no body forces (b = 0), and no

time dependent behaviour (∂/∂t → 0), to div(T ) = 0. To find an expression for T ,

we use the following constitutive law, which for the diagonal F yields:

T = F
dW

dF
− p̃1 =

λr λθ

λϕ




dW
dλr

dW
dλθ

dW
dλϕ

− p̃
1

1

1

 . (3.11)

Then:

Trr = λr
dW

dλr
− p̃, Tθθ = λθ

dW

dλθ
− p̃, Tϕϕ = λϕ

dW

dλϕ
− p̃ (3.12)

where p̃ is an unknown constant (different from the internal pressure P ), and all other

entries are 0. Then, div(T ) (expanded for spherical coordinates in [3, p 121]), reduces
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to:

div(T ) =

(
∂Trr
∂r

+ 2
Trr
r
− 1

r
(Tθθ + Tϕϕ)

)
er (3.13)

+

(
1

r

∂Tθθ
∂θ

+
cot(θ)

r
(Tθθ − Tϕϕ)

)
eθ

+

(
1

r sin(θ)

∂Tϕϕ
∂ϕ

)
eϕ.

The entry in the er direction, noting λθ = λφ, then reduces to:

0 =
∂Trr
∂r

+
2

r
(Trr − Tθθ)

=
∂Trr
∂r

+
2

r

(
λr

dW

dλr
− λθ

dW

dλθ

)
. (3.14)

Applying symmetry Using the symmetry in the problem, (3.14) can be reduced

to an Ordinary Differential Equation. First we notice that since λθ = λφ = λ and

J = 1, the principal stretches reduce to just one independent variable:

λr = 1/λ2, λθ = λ, λφ = λ

Therefore, the strain function, also just depends one on variable, such that we may

define:

h(λ) = W (λr = 1/λ2, λθ = λ, λφ = λ)

Then we notice that:

dh(λ)

dλ
=

dW

dλ

=
dW

dλr

dλr
dλ

+
dW

dλθ

dλθ
dλ

+
dW

dλφ

dλφ
dλ

=
dW

dλr

−2

λ3
+ 2

dW

dλθ

−λ
2

dh

dλ
=

(
1

λ2

)
dW

dλr
− λdW

dλθ

which is exactly the term in the brackets in (3.14). Next, we turn to the partial

derivative:

∂Trr
∂r

=
∂Trr
∂λ

∂

∂r

(
r

R(r)

)
=
∂Trr
∂λ

(
1

R
− rR−2R′

)
=
∂Trr
∂λ

(
1

R
− r

R2
· r2R−2

)
=
∂Trr
∂λ

1− r/R · (r2/R2)

R

=
∂Trr
∂λ

1− λ3

R
where we applied (3.10).
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Solving the ODE With the transformations done above, (3.14) becomes:

∂Trr
∂λ

=
1

1− λ3

dh

dλ
(3.15)

which is an ODE in λ for Trr, necessitating boundary conditions. Consider Figure 3,

by assuming the only applied stress on the boundary is due to the pressure, P , and

remembering tn = Tn, we find:

tn =

−Pn r = ra

0 r = rb
→ Trr =

−P r = ra

0 r = rb
(3.16)

Figure 3: Boundary conditions spherical shell with internal pressure P

Note that the minus sign is because the pressure acts in the direction opposite to

the surface normal, which is consistent with the convention that stress which causes

compression should be negative. Thus we have the known radial stress on the surfaces

of the shell. With that, we may integrate (3.15) to find:

Trr(λ) = Trr(λb) +

ˆ λ

λb

h′(λ)

1− λ3
dλ

Trr(λa) = −P = 0 +

ˆ λa

λb

h′(λ)

1− λ3
dλ

P =

ˆ λb

λa

h′(λ)

1− λ3
dλ (3.17)

where λa = ra/Ra and λb = rb/Rb. Note that in the last step the order of integration

was reversed, now from the inner to the outer boundary. To make further analytical

progress, we must choose a strain energy function.

Neo-Hookian strain energy function The simplest strain energy function, the

Neo-Hookian, becomes, for this deformation:

WNH =
µ

2
(I1 − 3) =

µ

2
(λ2

r + λ2
θ + λ2

φ − 3) =
µ

2
(2λ2 + 1/λ4 − 3) ≡ h(λ). (3.18)
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Thus

h′(λ) =
µ

2
(4λ− 4λ−5) = 2µ

λ6 − 1

λ5
= 2µ

(λ3 − 1)(λ3 + 1)

λ5
.

Yielding the final expression for the pressure:

P = −2µ

ˆ λb

λa

λ3 + 1

λ5
dλ = −2µ

[
1

λ
+

1

4λ4

]λb
λa

(3.19)

where λb(λa) = 3
√

1 + A3/B3(λ3
a − 1), derived from (3.10). Plotting the pressure ver-

sus the stretch λa yields Figure 4. Notice that for a stretch under ≈ 2, increasing

pressure increases stretch. However, once the critical pressure is exceeded, the balloon

keeps straining indefinitely. This trend does not change as the equation is always pos-

itive (λa < λb) and decreasing (negative powers). This is an example of inflationary

instability. This behaviour is due to the choice of strain energy function, and not a

physical phenomenon, contradicting Figure 1.

Figure 4: Graph of the pressure vs stretch relationship of a spherical shell for a

Neo-Hookian material with R ∈ [1, 2]m and shear modulus of 0.6MPa (reasonable

estimation for natural rubber [2]).

Mooney-Rivlin strain energy function As a hopefully more realistic strain en-

ergy function let us now consider Mooney-Rivlin, which becomes:

WMR =
C1

2
(I1−3)+

C2

2
(I2−3) =

C1

2
(2λ2+1/λ4−3)+

C2

2
(2/λ2+λ4−3) ≡ h(λ) (3.20)

Then

h′(λ) = 2C1(λ− λ−5) + 2C2(λ3 + λ−3)

= 2C1
(λ3 − 1)(λ3 + 1)

λ5
+ 2C2

(λ3 − 1)(λ3 + 1)

λ3
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such that the pressure-strain relationship is:

P =

[
C1

(
2

λ
+

1

2λ4

)
+ C2

(
1

λ2
− 2λ

)]λa(λb)

λa

(3.21)

which can once again be plotted, as shown in Figure 5. From the positive gradient for

λ > 5, we conclude that this strain energy does not exhibit inflationary instability,

and in fact looks very similar to the expected behaviour from Figure 1.

Figure 5: Pressure versus stretch relationship of a spherical shell for a Mooney-Rivlin

strain energy function with R ∈ [1, 2]m and C1 = 0.621MPa and C2 = 0.054MPa

(reasonable estimation for rubber [6]) The code for generating this and Figure 4 is

provided in Appendix B

.

Van Gent and Ogden-1 strain energy functions Performing the same analysis

for the van Gent strain energy function

WGE =
−µ
2β

ln (1− β(I1 − 3)) = − µ

2β
ln
(
1− β(2λ2 + λ−4 − 3)

)
(3.22)

and the Ogden-1 strain energy function

WOG1 =
2µ

β2

(
λβ1 + λβ2 + λβ3 − 3

)
=

2µ

β2

(
2λβ + λ−2β − 3

)
. (3.23)

leads to the following pressure versus stretch relationships:

Van Gent : P = −2µ

ˆ λb

λa

λ2 + λ−5

(1− β(2λ2 + λ−4 − 3))
dλ (3.24)

Ogden-1 : P = 4µ

ˆ λb

λa

λβ−1 − λ−2β−1

(1− λ3)β
dλ (3.25)
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The computation of these integrals for general β is quite complicated and beyond

the scope of this report.

The analysis in this section illustrates how we can describe a deformation (kine-

matics), apply rules such as Cauchy 1 (dynamics), and then find an expression for

the pressure inside a hyperelatic spherical shell. However, then, the selection of a

strain energy function causes the deterministic solution process to break down: there

is no longer a single correct answer. The Neo-Hookian strain energy function, while it

does not exhibit the dual phase behaviour, is applicable for small deformations. The

Mooney Rivlin function is not well suited for strains above 100% [7], for which the

Ogden strain energy function is more appropriate. However, Ogden-N requires more

parameters to be fit to the material. In summary, there is uncertainty regarding the

applicability all of these results that physical tests are best suited to resolve.

4 Model for a cylindrical shell

With the spherical case considered, we now proceed to the (more complicated) cylin-

drical case. Consider a long, circular, incompressible, elastic tube, with a varying

radius along its length. On both ends, flat endcaps are applied, which, while difficult

to apply in practice, are compatible with a uniform axial expansion, just as [4]. This

tube has an internal pressure and an axially applied force. The aim of this derivation

is to find a relationship between the deformation of the tube (in both radial and axial

directions) and the applied force F and pressure P . We will first describe the general

problem, then analyse a simplified model. The assumptions made in Section 3 for the

spherical shell are also made for this case.

4.1 Kinematics

The initial configuration is described by the cylindrical coordinates Q = {R,Θ, Z},
and in the current configuration by q = {r, θ, z}, as shown in Figure 6. Each coordi-

nate set has an associated set of basic vectors, (3.3).

To find the gradient of this transformation, F , we first characterize the deforma-

tion. For this, we need the transformation from cartesian to cylindrical coordinates

(4.26), and the relationship between the initial and current configurations (4.27).

11



Figure 6: Cylindrical shell geometry where F is the applied axial force and P is the

internal pressure.

X =

XY
Z

 =

R cos(Θ)

R sin(Θ)

Z

 x =

xy
z

 =

r cos(θ)

r sin(θ)

z

 (4.26)

q(Q) =

rθ
z

 =

r(R,Z)

Θ

z(Z)

 (4.27)

Using (4.26) and (3.4) to evaluate the scale factors of (3.5), and (4.27) for the deriva-

tive term, we find:

F =
∂r

∂R
er ⊗ER +

∂r

∂Z
er ⊗EZ +

r

R
eθ ⊗EΘ +

dz

dZ
ez ⊗EZ . (4.28)

The resulting deformation gradient is not diagonal and the presence of a second

(unknown) derivative term, greatly complicates the analysis. Let’s explore simplifying

assumptions.

Thin-walled model We could assume the wall to be so thin (B−A� A) that the

wall becomes a surface with constant thickness, such that r(R,Z) reduces to r(Z),

which is the simplification made by C. Lestringant and B. Audoly in [5]. However,

we will go a different route.

4.2 Simplified model

If we assume that the deformation is homogeneous along the length of the tube, two

changes happen: 1) r only depends on R (r(R)), and 2) the axial stretch is constant:
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z = ζZ. The first part of this subsection follows [8, p. 52]. This does reduce the

range of applicability of the model: it is not suitable for describing the shape of the

transition between the low and high strain sections.

Kinematics The deformation gradient then simplifies to:

F =
dr(R)

dR
er ⊗ER +

r

R
eθ ⊗Eθ + ζez ⊗EZ (4.29)

whereby F is diagonal. Therefore, the principal stretches are the diagonal entries of

F :

λr =
dr(R)

dR
, λθ =

r

R
≡ λ, λz = ζ

Next, we assumed an isotropic material, which implies:

J = λrλθλz = 1 → dr

dR
r =

R

ζ
→ d

dR

(
r2

2

)
=
R

ζ

Noting that a boundary condition for the transformation is r(A) = a we can then

solve the ODE:

r2

2
=
R2

2ζ
+ C → r(R) =

√
a2 +

R2 − A2

ζ
(4.30)

We may then conclude that λ = r(R)/R, and hence also the deformation, is fully

determined by the initial state (the parameter A) and the parameters λa = a/A and

ζ. For example, the strain of the outer wall radius, λb = b/B, can then be written as:

λb =
r(B)

B
=

√
a2

B2
+
B2 − A2

B2ζ
=

√
λ2
aA

2

B2
+

1

ζ
− A2

B2ζ
=

√
1

ζ
+

A2

B2ζ
(ζλ2

a − 1)

Dynamics Just as for the spherical shell, we may infer from the diagonal F that

T is diagonal too, with values:

[T ] = diag

(
Trr = λr

dW

dλr
− p̃, Tθθ = λθ

dW

dλθ
− p̃, Tzz = λz

dW

dλz
− p̃
)

(4.31)

The first Cauchy equation [8, p. 30] with no body forces (b = 0) and steady state

(∂/∂t → 0) reduces to div(T ) = 0. For a diagonal T in cylindrical coordinates [3, p

121] this becomes:

0 =

[
∂Trr
∂r

+
1

r
(Trr − Tθθ)

]
er +

[
1

r

∂Trr
∂r

]
eθ +

[
∂Tzz
∂z

]
ez (4.32)
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where the er component is called the balance law. Integrating it yields:

Trr(r) = Trr(a) +

ˆ r

a

Tθθ − Trr
r

dr. (4.33)

Next, we prescribe the same boundary conditions as for the spherical shell: Trr(a) =

−P , Trr(b) = 0, yielding:

P =

ˆ b

a

Tθθ − Trr
r

dr (4.34)

which provides the pressure required to achieve a certain stress state. This is one

equation, but as we have two unknowns, we need a second one. It comes from force

equilibrium in the endcaps. This could take the form Tzz(z = 0) = Ftotal = Tzz(z = h),

but there would be a dependence on r. Therefore, we use an integral condition,

integrating over an annulus from a to b:

ˆ b

a

Tzz(r)2πrdr = Ftotal = F + Pπa2 (4.35)

where Tzz(r) is the axial stress (with unit Pa = N/m2), and Ftotal is the total axial

force, which is the sum of the externally applied force F and the pressure over the

internal area of the endcap P · πa2. However, for incompressible materials this is not

convenient due to the presence of p̃ in (4.31). Hence we shall transform the integral:

2π

ˆ b

a

Tzzrdz = 2π

ˆ b

a

(Tzz − Trr + Trr)rdr

Then we use integration by parts for Trr, and the balance law (4.32):

2π

ˆ b

a

Trrrdr = 2π

[
Trr ·

r2

2

]b
a

− 2π

ˆ b

a

∂Trr
∂r

r2

2
dr

= Trr(b)b
2π − Trr(a)a2π − π

ˆ b

a

1

r
(Tθθ − Trr)r2dr

= Pa2π − π
ˆ b

a

(Tθθ − Trr)rdr

Then

2π

ˆ b

a

(Tzz − Trr + Trr)rdr = π

ˆ b

a

(2Tzz − 2Trr − (Tθθ − Trr))rdr + Pa2π
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which can be combined with (4.35) to find:

F = π

ˆ b

a

(2Tzz − Trr − Tθθ)rdr (4.36)

which is an equation that yields the externally applied force F (not to be confused

with the total force Ftotal = F + Pπa2) required to achieve a certain stress state.

Equations (4.36) and (4.34) form the governing equations of this problem. Filling in

(3.11) yields: P =
´ b
a

(
λθ

dW
dλθ
− λr dW

dλr

)
1
r
dr

F =
´ b
a

(
2λz

dW
dλz
− λr dW

dλr
− λθ dW

dλθ

)
rdr

. (4.37)

To make further analytical progress, we must select a strain energy function.

Neo-Hookian strain energy function The most simple strain energy function,

the Neo-Hookian

WNH =
C1

2

(
λ2
θ + λ2

z + λ2
r − 3

)
can be tried. For this strain energy function we find:

dW

dλr
= C1λr

dW

dλθ
= C1λθ

dW

dλz
= C1λz

which we may substitute into the pressure equation (4.37) to find:

P =

ˆ b

a

C1(λ2
θ − λ2

r)
1

r
dr

= C1

ˆ b

a

(
λ2 − 1

λζ2

)
1

r
dr

= C1

ˆ b

a

(
r

R(r)2
− 1

ζ2

R(r)2

r3

)
dr.

We can then invert (4.30) to find (R(r))2 = A2 + ζ(r2 − a2), such that (with help

from Mathematica, commands presented in Appendix A) one can find:

P = C1

[
A2 − a2ζ

2r2ζ2
− ln(r)

ζ
+

ln(A2 + ζ(r2 − a2))

2ζ

]b
a

(4.38)
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Similarly for F , we may find:

F = π

ˆ b

a

C1

(
2λ2

θ − λ2
r − λ2

z

)
rdr

= πC1

ˆ b

a

2

(
ζ2 − 1

λ2ζ2
− λ2

)
rdr

= πC1

[(
ζ2 − 1

ζ2

)
r2 − A2 − a2ζ

2ζ2

(
ln(A2 + ζ(r2 − a2))− 2 ln(r)

)]b
a

. (4.39)

Mooney Rivlin strain energy function As we have seen the Neo-Hookian strain

energy function to be unstable for a cylindrical shell, we may suspect that to be the

case for a spherical shell as well. Therefore we try the Mooney-Rivlin strain energy

function:

WMR =
C1

2
(λ2

r + λ2
θ + λ2

z − 3) +
C2

2
(λ2

rλ
2
θ + λ2

rλ
2
z + λ2

θλ
2
z − 3).

For which

dW

dλr
= C1λr + C2λr(λ

2
θ + λ2

z)
dW

dλθ
= C1λθ + C2λθ(λ

2
r + λ2

z)

dW

dλz
= C1λz + C2λz(λ

2
r + λ2

θ).

Substituting these into (4.37) yields:

P =

ˆ b

a

(
λ2
θ(C1 + C2(λ2

r + λ2
z))− λ2

r(C1 + C2(λ2
θ + λ2

z))
) 1

r
dr

=

ˆ b

a

{
r3

R(r)2
(C1 + C2ζ

2) +
R(r)2

r

(
−C1

ζ2
− C2

)}
dr

=
a2ζ − A2

ζ2
(C1 + C2ζ

2)

[
−1

2r2
+

ζ ln(r)

A2 − a2ζ
− ζ ln(A2 + ξ(r2 − a2))

2(A2 − a2ζ)

]b
a

(4.40)

and

F = π

ˆ b

a

(2λ2
z(C1 + C2(λ2

θ + λ2
r))− λ2

θ(C1 + C2(λ2
r + λ2

z))− λ2
r(C1 + C2(λ2

z + λ2
θ)))rdr

= π

ˆ b

a

{
r3

R(r)2
(C2ζ

2 − C1) +
R(r)2

r

(
C2 −

C1

ζ2

)
+ 2r

(
ζ2C1 −

C2

ζ2

)}
dr

=
π

ζ2

[
r2(C2 + C1ζ)(ζ3 − 1) + (A2 − a2ζ)(C2ζ

2 − C1)

(
ln(r)− 1

2
ln(A2 + ζ(r2 − a2))

)]b
a

(4.41)

which is not very amenable to further analytical analysis. However, since we have

b = r(B; a), we have found explicit expressions for F (a, ζ) and P (a, ζ), for both the

Neo-Hookian and Mooney-Rivlin strain energy functions.
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5 Characteristic pressures of the deformation

Now that we have the explicit functions for P and F, let us start looking for the param-

eters of Figure 1, namely Pmax and Ppropagate. Let the force and pressure relationships

be written as

P = f1(a, ζ) F = f2(a, ζ). (5.42)

5.1 Finding Pmax

Pmax is the maximum pressure at which there is a monotonous increase in strain with

pressure, as explained in Section 2. It depends on the material (through C1 and C2),

the initial shape (A and B), and the applied axial force F .

Analytical solution If we consider F a constant, known input, then we have the

following system of three equations for three unknowns:

0 =
∂f1(ap,max, ζp,max)

∂a

Pmax = f1(ap,max, ζp,max)

F = f2(ap,max, ζp,max)

where we the solution corresponds to lowest value of ap,max. Under the assump-

tion that it can be solved explicitly, doing so would provide a solution for Pmax,

parametrised by F .

Numerical solution However, due to the complexity of the equations a numerical

technique seems more appropriate, especially if later analysis indicates that the cho-

sen strain energy function is not appropriate for the problem at hand, and a more

advanced strain energy function is required to fit the data. To find the numerical

solution, we first require the following building block: a 2D root-finding algorithm,

that, for a given (F, a), will find (P, ζ) (though we will not be using ζ) for

g(F, P, a, ξ) =

[
F − f1(a, ξ)

P − f2(a, ξ)

]
= 0. (5.43)

Let this algorithm be written as h1(F, a) = P . Then, we apply a maximisation

algorithm on this problem,

max
a

h1(F, a) = Pmax, (5.44)
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yielding the desired result. An initial value of a = A (no deformation), will help

ensure the local maximum is found, see Figure 1. As the functions are well behaved, a

modified Newton-Raphson (modified to use a finite difference scheme to approximate

the derivative(s)) should perform well for a suitable initial guess. As these root-finding

algorithms will be run many times for slightly different inputs, it seems sensible to

use the solution of the previous step as an initial guess for the current one.

5.2 Finding Pprop

To find the propagation pressure, at which the bulge propagates along the axial

direction, we need the Maxwell condition, which was modified for the propagation

of bulges in cylindrical shells by E. Chater and J.W.H Hutchkinson in [1]. Their

derivation is presented here. To find the pressure Pprop, we rely on two observations:

1. The change in volume of the balloon, when the transition front moves to engulf

a new section that has unit undeformed volume, is VD − VU (where VU is the

unit volume of the low strain section and VD for the high strain section) and the

work done hereby is Pprop(VD − VU). This work done by the pressure is equal

to the work performed on a unit of undeformed gas as it passes from state U to

D:

Pprop(VD − VU) = ∆W

2. Let P (V ;F ) be a function that, for a given internal volume V (noting V =

1 · πa2) and the total force F , returns the pressure. The isothermal transi-

tion of a unit volume of air takes work ∆W , which does not depend on the

transition history. In particular, we may calculate ∆W using purely cylindrical

deformations to connect states U and D. Hence:

∆W =

ˆ VD

VU

P (V )dV

Combining these two observations, we find the Maxwell condition:

Pprop(VD − VU) =

ˆ VD

VU

P (V )dV (5.45)

We can visually interpret the Maxwell condition as specifying the pressure at which

the areas I and II, as shown in Figure 7, are equal.
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Figure 7: Visualisation of the Maxwell condition

Analytical solution Before we seek a solution for (5.45), we need to find an ex-

pression for P (V ;F ). For this, we may assume unit depth of the section of interest,

then V = 1 ·πa2 such that a =
√
V/π. Then, assuming both V and F are known, we

have 2 unknowns (P and ζ) and a system of 2 equations:

Pprop = f1

(
a =

√
V

π
, ζ

)

F = f2

(
a =

√
V

π
, ζ

)

which could be solved for Pprop(V ;F ). Hereafter we assume F is a known constant

such that we have Pprop(V ). Then, we can find VD and VU by solving P (V ) = Pprop,

and setting the lowest value equal to VU , and the highest value to VD. Then, with

explicit expressions for VU , VD, and P (V ), we should be able to find an explicit

expression for Pprop.

Numerical solution Just as for Pmax, a numerical solution might end up being

more practical, and hence a solution technique for it is explored here too. We can

numerically find P (V ;F ) by solving (5.43) for (P, ζ), and inputs of (a =
√
V/π, F ).

Then we can find VU(P∗) and VD(P∗) by finding the roots of P (V ;F ) = P∗, and

setting the lowest value to VU and the highest value to VD. Finally, then (5.45) reduces

to a rootfinding problem for h2(P∗) = P ∗ ·(VD(P∗) − VU(P∗)) −
´ VD(P∗)
VU (P∗) P (V̄ )dV̄ ,

whose solution is then Pprop.
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6 Conclusion

In this report, we analysed the inflation process of hyperelastic incompressible shells.

We started off by qualitatively explaining the process whereby sections of a hy-

perelastic shell can be in two different states for the same internal pressure, and how

that translates into a complete inflation procedure. Then, we looked at the case of a

spherical shell and found an explicit mapping from stretch λa = a/A to the pressure

P for different strain energy functions. This showed how the choice of strain energy

function can greatly affect the solution and its validity.

We then proceeded onto the more complicated cylindrical case, which became

feasible after some simplifying assumptions. We again found a direct mapping, from

the deformation state (ζ, a) to the applied force and pressure (P, F ), which is dual

due to the extra degree of freedom in the deformation (extension along the radial

axis). Finally we outlined how to find Pmax and Pprop, both a theoretical analytical

plan and a more feasible numerical technique.

The models and analysis performed in this report provide all the relationships

qualitatitively explained in Figure 1 of Section 2: The pressure P vs strain λa =

a/A (and similarly internal volume) relationship, the maximum pressure Pmax below

which there is a monotonous increase in strain for an increase in pressure, and the

propagating pressure Pprop which is when the bulge propagates towards the low strain

section.
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Cylindrical Shell - Strain energy 

function calculations

Setting up the variables

In[2]:= R[r_] := Sqrt[xi * (r^2 - a^2) + A^2]

L[r_] := r / R[r]

lz := xi

lr := 1 / (xi * L[r])

lt := L[r]

b := Sqrt[a^2 + (B^2 - A^2) / xi]

termr := lr^2 (c1 + c2 (lz^2 + lt^2))

termt := lt^2 (c1 + c2 (lz^2 + lr^2))

termz := lz^2 (c1 + c2 (lr^2 + lt^2))

Neo-Hookian strain energy function

Pressure relationship

In[25]:= c1 * Integrate[(lt^2 - lr^2) / r, r]

Out[25]= c1 -
-A2 + a2 xi

2 r2 xi2
-
Log[r]

xi
+
LogA2 - a2 xi + r2 xi

2 xi

Force relationship

In[12]:= ci Pi Integrate[(2 lz^2 - lr^2 - lt^2) r, r]

Out[12]= ci π -
r2

xi
+ r2 xi2 -

A2 - a2 xi Log[r]
xi2

-
-A2 + a2 xi LogA2 - a2 xi + r2 xi

2 xi2



Mooney Rivlin strain energy function

Pressure relationship

In[23]:= Integrate[(termt - termr) / r, r]

Out[23]= 

-A2 + a2 xi c1 + c2 xi2 - 1

2 r2
+

xi Log[r]

A2-a2 xi
-

xi LogA2-a2 xi+r2 xi
2 A2-a2 xi 

xi2

Force relationship

In[24]:= Pi * Integrate[(2 termz - termr - termt) * r, r]

Out[24]= 

1

xi2
π r2 (c2 + c1 xi) -1 + xi3 +

A2 - a2 xi -c1 + c2 xi2 Log[r] + 1

2
A2 - a2 xi c1 - c2 xi2 LogA2 - a2 xi + r2 xi

2     



B Code

1 import matp lo t l i b . pyplot as p l t

2 import matp lo t l i b

3 import numpy as np

4

5

6 f ont = { ’ s i z e ’ : 16}
7 matp lo t l i b . rc ( ’ f ont ’ , ∗∗ f ont )
8 mu = 0.6

9 A = 1

10 B = 2

11 c 1 = 0.621

12 c 2 = 0.054

13

14

15 def pre s su re neo hook ian ( lambda a ) :

16 lambda b = (1 + A ∗∗ 3 ∗ ( lambda a ∗∗ 3 − 1) / B ∗∗ 3) ∗∗ (1 / 3)

17

18 def s i n g l e ( l ) :

19 return −2∗mu∗(1/ l + 1/(4∗ l ∗∗4) )
20

21 return s i n g l e ( lambda a ) − s i n g l e ( lambda b )

22

23

24 def pr e s su r e mooney r i v l i n ( lambda a ) :

25 lambda b = (1 + A ∗∗ 3 ∗ ( lambda a ∗∗ 3 − 1) / B ∗∗ 3) ∗∗ (1 / 3)

26

27 def s i n g l e ( l ) :

28 return c 1 ∗ (2∗ l ∗∗(−1) + 0 .5∗ l ∗∗(−4) ) + c 2 ∗ ( l ∗∗(−2) − 2∗ l )

29

30 return s i n g l e ( lambda b ) − s i n g l e ( lambda a )

31

32

33 lambda arr = np . arange (1 , 10 , 0 . 01 )

34 for func in [ p re s sure neo hook ian , p r e s su r e mooney r i v l i n ] :

35 p l t . p l o t ( lambda arr , func ( lambda arr ) , l i n ew id th=2)

36 p l t . y l ab e l ( ”Pressure , p [MPa] ” )

37 p l t . x l ab e l ( r ” Stretch , $\ lambda a$ [− ] ” )

38 p l t . t i g h t l a y ou t ( )

39 p l t . show ( )

plotting spherical deformation.py
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